2024届上海市浦东新区高桥中学高一数学第二学期期末复习检测模拟试题含解析_第1页
2024届上海市浦东新区高桥中学高一数学第二学期期末复习检测模拟试题含解析_第2页
2024届上海市浦东新区高桥中学高一数学第二学期期末复习检测模拟试题含解析_第3页
2024届上海市浦东新区高桥中学高一数学第二学期期末复习检测模拟试题含解析_第4页
2024届上海市浦东新区高桥中学高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市浦东新区高桥中学高一数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集为,则实数的值为()A. B.C. D.2.已知数列{an}为等差数列,,=1,若,则=()A.22019 B.22020 C.22017 D.220183.若都是正数,则的最小值为().A.5 B.7 C.9 D.134.一个等腰三角形绕着底边上的高所在的直线旋转180度所形成的几何体是()A.两个共底面的圆锥 B.半圆锥 C.圆锥 D.圆柱5.设,满足约束条件,则目标函数的最大值是()A.3 B. C.1 D.6.若且,则的最小值是()A.6 B.12 C.24 D.167.已知函数,下列结论不正确的是(

)A.函数的最小正周期为B.函数在区间内单调递减C.函数的图象关于轴对称D.把函数的图象向左平移个单位长度可得到的图象8.已知函数,则()A.2 B.-2 C.1 D.-19.已知角是第三象限的角,则角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角10.已知,是两条不同的直线,,是两个不同的平面,则下列说法正确的是()A.若,,则 B.若,,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.若实数,满足,则的最小值为________.12.已知是等差数列,,,则的前n项和______.13.方程的解为_________.14.对于数列满足:,其前项和为记满足条件的所有数列中,的最大值为,最小值为,则___________15.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.现从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为.16.如图,将全体正整数排成一个三角形数阵,按照这样的排列规律,第行从右至左的第3个数为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:第一种,每天支付元,没有奖金;第二种,每天的底薪元,另有奖金.第一天奖金元,以后每天支付的薪酬中奖金比前一天的奖金多元;第三种,每天无底薪,只有奖金.第一天奖金元,以后每天支付的奖金是前一天的奖金的倍.(1)工作天,记三种付费方式薪酬总金额依次为、、,写出、、关于的表达式;(2)该学生在暑假期间共工作天,他会选择哪种付酬方式?18.等差数列中,公差,,.(1)求的通项公式;(2)若,求数列的前项和.19.如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.为的中点,为的中点,过点,,的平面交于.(1)求证:平面;(2)若时,求二面角的余弦值.20.某运动爱好者对自己的步行运动距离(单位:千米)和步行运动时间(单位:分钟)进行统计,得到如下的统计资料:如果与存在线性相关关系,(1)求线性回归方程(精确到0.01);(2)将分钟的时间数据称为有效运动数据,现从这6个时间数据中任取3个,求抽取的3个数据恰有两个为有效运动数据的概率.参考数据:,参考公式:,.21.已知.(1)化简;(2)若是第二象限角,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

不等式的解集为,为方程的两根,则根据根与系数关系可得,.故选C.考点:一元二次不等式;根与系数关系.2、A【解题分析】

根据等差数列的性质和函数的性质即可求出.【题目详解】由题知∵数列{an}为等差数列,an≠1(n∈N*),a1+a2019=1,∴a1+a2019=a2+a2018=a3+a2017=…=a1009+a1011a1010=1,∴a1010∴f(a1)×f(a2)×…×f(a2019)=41009×(﹣2)=﹣1.故选A.【题目点拨】本题考查了等差数列的性质和函数的性质,考查了运算能力和转化能力,属于中档题,注意:若{an}为等差数列,且m+n=p+q,则,性质的应用.3、C【解题分析】

把式子展开,合并同类项,运用基本不等式,可以求出的最小值.【题目详解】因为都是正数,所以,(当且仅当时取等号),故本题选C.【题目点拨】本题考查了基本不等式的应用,考查了数学运算能力.4、C【解题分析】

根据旋转体的知识,结合等腰三角形的几何特征,得出正确的选项.【题目详解】由于等腰三角形三线合一,故等腰三角形绕着底边上的高所在的直线旋转180度所形成的几何体是圆锥.故选C.【题目点拨】本小题主要考查旋转体的知识,考查等腰三角形的几何特征,属于基础题.5、C【解题分析】

作出不等式组对应的平面区域,结合图形找出最优解,从而求出目标函数的最大值.【题目详解】作出不等式组对应的平面区域,如阴影部分所示;平移直线,由图像可知当直线经过点时,最大.,解得,即,所以的最大值为1.故答案为选C【题目点拨】本题给出二元一次不等式组,求目标函数的最大值,着重考查二元一次不等式组表示的平面区域和简单的线性规划,也考查了数形结合的解题思想方法,属于基础题.6、D【解题分析】试题分析:,当且仅当时等号成立,所以最小值为16考点:均值不等式求最值7、D【解题分析】

利用余弦函数的性质对A、B、C三个选项逐一判断,再利用平移“左加右减”及诱导公式得出,进而得出答案.【题目详解】由题意,函数其最小正周期为,故选项A正确;函数在上为减函数,故选项B正确;函数为偶函数,关于轴对称,故选项C正确把函数的图象向左平移个单位长度可得,所以选项D不正确.故答案为D【题目点拨】本题主要考查了余弦函数的性质,以及诱导公式的应用,着重考查了推理与运算能力,属于基础题.8、B【解题分析】

根据分段函数的表达式,直接代入即可得到结论.【题目详解】由分段函数的表达式可知,则,故选:.【题目点拨】本题主要考查函数值的计算,根据分段函数的表达式求解是解决本题的关键,属于容易题.9、D【解题分析】

可采取特殊化的思路求解,也可将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的即为所求区域.【题目详解】(方法一)取,则,此时角为第二象限的角;取,则,此时角为第四象限的角.(方法二)如图,先将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的区域即为角的终边所在的区域,故角为第二或第四象限的角.故选:D【题目点拨】本题主要考查了根据所在象限求所在象限的方法,属于中档题.10、D【解题分析】

试题分析:,是两条不同的直线,,是两个不同的平面,在A中:若,,则,相交、平行或异面,故A错误;在B中:若,,,则,相交、平行或异面,故B错误;在C中:若,,则或,故C误;在D中:若,,由面面平行的性质定理知,,故D正确.考点:空间中直线、平面之间的位置关系.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由题意可得=≥2=2,由不等式的性质变形可得.【题目详解】∵正实数a,b满足,∴=≥2=2,∴ab≥2当且仅当=即a=且b=2时取等号.故答案为2.【题目点拨】本题考查基本不等式求最值,涉及不等式的性质,属基础题.12、【解题分析】

由,可求得公差d,进而可求得本题答案.【题目详解】设等差数列的公差为d,由题,有,解得,所以.故答案为:【题目点拨】本题主要考查等差数列的通项公式及求和公式,属基础题.13、【解题分析】

根据特殊角的三角函数及正切函数的周期为kπ,即可得到原方程的解.【题目详解】则故答案为:【题目点拨】此题考查学生掌握正切函数的图象及周期性,是一道基础题.14、1【解题分析】

由,,,,,分别令,3,4,5,求得的前5项,观察得到最小值,,计算即可得到的值.【题目详解】由,,,,,可得,解得,又,,可得或,又,,,可得或5;或6;或或8;又,,,,可得或6或7;或7或8;或8或9或10或12;或10或12或1.综上可得的最大值,最小值为,则.故答案为:1.【题目点拨】本题考查数列的和的最值,注意运用元素与集合的关系,运用列举法,考查判断能力和运算能力,属于中档题.15、.【解题分析】试题分析:从中任取3个不同的数,有,,,,,,,,,共10种,其中只有为勾股数,故这3个数构成一组勾股数的概率为.考点:用列举法求随机事件的概率.16、【解题分析】

由题可以先算出第行的最后一个数,再从右至左算出第3个数即可.【题目详解】由图得,第行有个数,故前行一共有个数,即第行最后一个数为,故第行从右至左的第3个数为.【题目点拨】本题主要考查等差数列求和问题,注意从右至左的第3个数为最后一个数减2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2)第三种,理由见解析.【解题分析】

(1)三种支付方式每天支付的金额依次为数列、、,可知数列为常数数列,数列是以为首项,以为公差的等差数列,数列是以为首项,以为公比的等比数列,利用等差数列和等比数列求和公式可计算出、、关于的表达式;(2)利用(1)中的结论,计算出、、的值,比较大小后可得出结论.【题目详解】(1)设三种支付方式每天支付的金额依次为数列、、,它们的前项和分别为、、,第一种付酬方式每天所付金额组成数列为常数列,且,所以;第二种付酬方式每天所付金额组成数列是以为首项,以为公差的等差数列,所以;第三种付酬方式每天所付金额组成数列是以为首项,以为公比的等比数列,所以;(2)由(1)知,当时,,,,则.因此,该学生在暑假期间共工作天,选第三种付酬方式较好.【题目点拨】本题考查等差数列和等比数列的应用,涉及等差数列和等比数列求和公式的应用,考查计算能力,属于中等题.18、(1)(2)【解题分析】

(1)由和可列出方程组,解出和,即得通项公式;(2)将(1)中所得通项公式代入,列项,用裂项相消法求的前n项和.【题目详解】解:(1)因为,,所以因为,所以故的通项公式为.(2)因为,所以.【题目点拨】本题考查求等差数列通项公式和用裂项相消法求数列前n项和,是典型考题.19、(1)证明见解析;(2)【解题分析】

(1)首先证明平面,由平面平面,可说明,由此可得四边形为平行四边形,即可证明平面;(2)延长交于点,过点作交直线于点,则即为二面角的平面角,求出的余弦值即可得到答案.【题目详解】(1)∵为矩形∴,平面,平面∴平面.又因为平面平面,∴.为中点,为中点,所以平行且等于,即四边形为平行四边形所以,平面,平面所以平面(2)不妨设,.因为为中点,为等边三角形,所以,,且∵,所以有平面,故因为平面平面∴平面,又,∴平面,则延长交于点,过点作交直线于点,由于平行且等于,所以为中点,,由于,,,所以平面,则,所以即为二面角的平面角在中,,,所以,所以.【题目点拨】本题考查线面平行的证明,以及二面角的余弦值的求法,考查学生空间想象能力,计算能力,由一定综合性.20、(1)(2)【解题分析】

(1)先计算所给数据距离、时间的平均值,,利用公式求,再利用回归方程求.(2)由(1)计算的个数,先求从6个中任取3个数据的总的取法,再计算抽取的3个数据恰有两个为有效运动数据的取法,利用古典概型概率计算公式可得所求.【题目详解】解:(1)依题意得,所以又因为,故线性回归方程为.(2)将的6个值,代入(1)中回归方程可知,前3个小于30,后3个大于30,所以满足分钟的有效运动数据的共有3个,设3个有效运动数据为,另3个不是有效运动数据为,则从6个数据中任取3个共有20种情况(或一一列举),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论