六盘水市重点中学2024届数学高一下期末教学质量检测试题含解析_第1页
六盘水市重点中学2024届数学高一下期末教学质量检测试题含解析_第2页
六盘水市重点中学2024届数学高一下期末教学质量检测试题含解析_第3页
六盘水市重点中学2024届数学高一下期末教学质量检测试题含解析_第4页
六盘水市重点中学2024届数学高一下期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六盘水市重点中学2024届数学高一下期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数与的图象上存在关于轴对称的点,则实数的取值范围是().A. B. C. D.2.已知的模为1,且在方向上的投影为,则与的夹角为()A.30° B.60° C.120° D.150°3.某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法4.在中,内角,,的对边分别为,,,且,,为的面积,则的最大值为()A.1 B.2 C. D.5.设,函数在区间上是增函数,则()A. B.C. D.6.在公比q为整数的等比数列{an}中,Sn是数列{an}A.q=2 B.数列SnC.S8=510 D.数列7.某几何体的三视图如图所示,则该几何体的表面积是()A.2 B. C. D.128.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为()A.30° B.45° C.60° D.90°9.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件10.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形二、填空题:本大题共6小题,每小题5分,共30分。11.设为虚数单位,复数的模为______.12.=__________.13.过P(1,2)的直线把圆分成两个弓形,当其中劣孤最短时直线的方程为_________.14.若则的最小值是__________.15.已知正数、满足,则的最大值为__________.16.向量在边长为1的正方形网格中的位置如图所示,则以向量为邻边的平行四边形的面积是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如右图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为nmile,在A处看灯塔C在货轮的北偏西30°,距离为nmile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.18.己知角的终边经过点.求的值;求的值.19.已知函数(1)求的最值、单调递减区间;(2)先把的图象向左平移个单位,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,求的值.20.如图所示,是一个矩形花坛,其中米,米.现将矩形花坛扩建成一个更大的矩形花坛,要求:在上,在上,对角线过点,且矩形的面积小于150平方米.(1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并确定函数的定义域;(2)当的长度是多少时,矩形的面积最小?并求最小面积.21.已知中,,,点D在AB上,,并且.(1)求BC的长度;(2)若点E为AB中点,求CE的长度.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】若函数f(x)=a﹣x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的图象是开口朝上,且以直线x=1为对称轴的抛物线,故当x=1时,g(x)取最小值﹣2,当x=2时,函数取最大值﹣1,故a∈[﹣2,﹣1],故选:A.点睛:图像上存在关于轴对称的点,即方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,转化为方程有解求参的问题,变量分离,画出函数图像,使得函数图像和常函数图像有交点即可;这是解决方程有解,图像有交点,函数有零点的常见方法。2、A【解题分析】

根据投影公式,直接得到结果.【题目详解】,.故选A.【题目点拨】本题考查了投影公式,属于简单题型.3、B【解题分析】

此题为抽样方法的选取问题.当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样.【题目详解】依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第②项调查总体中个体较少,应采用简单随机抽样法.

故选B.【题目点拨】本题考查随机抽样知识,属基本题型、基本概念的考查.4、C【解题分析】

先由正弦定理,将化为,结合余弦定理,求出,再结合正弦定理与三角形面积公式,可得,化简整理,即可得出结果.【题目详解】因为,所以可化为,即,可得,所以.又由正弦定理得,,所以,当且仅当时,取得最大值.故选C【题目点拨】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.5、C【解题分析】

首先比较自变量与的大小,然后利用单调性比较函数值与的大小.【题目详解】因为,函数在区间上是增函数,所以.故选C.【题目点拨】已知函数单调性比较函数值大小,可以借助自变量的大小来比较函数值的大小.6、D【解题分析】

由等比数列的公比q为整数,得到a2<a3,再由等比数列的性质得出a1a4=a【题目详解】由等比数列的公比q为整数,得到a2由等比数列的性质得出a1a4=a2aSn=a11-qnS8=2所以,数列lgan是以故选:D.【题目点拨】本题考查等比数列基本性质的应用,考查等比数列求和以及等比数列的定义,充分利用等比数列下标相关的性质,将项的积进行转化,能起到简化计算的作用,考查计算能力,属于中等题。7、C【解题分析】

由该几何体的三视图可知该几何体为底面是等腰直角三角形的直棱柱,再结合棱柱的表面积公式求解即可.【题目详解】解:由该几何体的三视图可知,该几何体为底面是等腰直角三角形的直棱柱,又由图可知底面等腰直角三角形的直角边长为1,棱柱的高为1,则该几何体的表面积是,故选:C.【题目点拨】本题考查了几何体的三视图,重点考查了棱柱的表面积公式,属基础题.8、A【解题分析】

先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【题目详解】解:先画出图形,将平移到,为直线与所成的角,设正方体的边长为,,,,,,故选:.【题目点拨】本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.9、B【解题分析】试题分析:把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不可能同时发生,是互斥事件,但除了事件“甲分得红牌”与“乙分得红牌”还有“丙分得红牌”,所以这两者不是对立事件,答案为B.考点:互斥与对立事件.10、A【解题分析】

根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【题目详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【题目点拨】本题考查相等向量、垂直关系的向量表示,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解题分析】

利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.【题目详解】由题意,复数,则复数的模为.故答案为5【题目点拨】本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.12、2【解题分析】由对数的运算性质可得到,故答案为2.13、【解题分析】

首先根据圆的几何性质,可分析出当点是弦的中点时,劣弧最短,利用圆心和弦的中点连线与直线垂直,可求得直线方程.【题目详解】当劣弧最短时,即劣弧所对的弦最短,当点是弦的中点时,此时弦最短,也即劣弧最短,圆:,圆心,,,直线方程是,即,故填:.【题目点拨】本题考查了直线与圆的位置关系,以及圆的几何性质,属于基础题型.14、【解题分析】

根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【题目详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【题目点拨】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.15、【解题分析】

直接利用均值不等式得到答案.【题目详解】,当即时等号成立.故答案为:【题目点拨】本题考查了均值不等式,意在考查学生的计算能力.16、3【解题分析】

将向量平移至相同的起点,写出向量对应的坐标,计算向量的夹角,从而求得面积.【题目详解】根据题意,将两个向量平移至相同的起点,以起点为原点建立坐标系如下所示:则,故.又两向量的夹角为锐角,故,则该平行四边形的面积为.故答案为:3.【题目点拨】本题考查用向量解决几何问题的能力,涉及向量坐标的求解,夹角的求解,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)24;(2)8【解题分析】

(1)利用已知条件,利用正弦定理求得AD的长.(2)在△ADC中由余弦定理可求得CD,答案可得.【题目详解】(1)在△ABD中,由已知得∠ADB=60°,B=45°由正弦定理得(2)在△ADC中,由余弦定理得CD2=AD2+AC2﹣2AD•ACcos30°,解得CD=.所以A处与D处之间的距离为24nmile,灯塔C与D处之间的距离为nmile.【题目点拨】点睛:解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.18、(1)(2)【解题分析】

(1)直接利用三角函数的定义的应用求出结果.(2)利用同角三角函数关系式的变换和诱导公式的应用求出结果.【题目详解】(1)由题意,由角的终边经过点,根据三角函数的定义,可得.由知,则.【题目点拨】本题主要考查了三角函数关系式的恒等变换,同角三角函数的关系式的变换,诱导公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.19、(1),,单调递减区间为;(2).【解题分析】

(1)函数,得最大值为,并解不等式,得到函数的单调递减区间;(2)由平移变换、伸缩变换得到函数,再把代入求值.【题目详解】(1)因为,所以当时,,当时,.由,所以函数的单调递减区间为.(2)的图象向左平移个单位得:,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:,当时,.【题目点拨】本题考查三角函数中的辅助角公式、三角函数的性质、图象变换等知识,对三角函数图象与性质进行综合考查.20、(1),;(2),.【解题分析】

(1)由可得,,∴.由,且,解得,∴函数的定义域为.(2)令,则,,当且仅当时,取最小值,故当的长度为米时,矩形花坛的面积最小,最小面积为96平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论