2024届安徽省合肥市庐阳区第一中学数学高一下期末质量跟踪监视模拟试题含解析_第1页
2024届安徽省合肥市庐阳区第一中学数学高一下期末质量跟踪监视模拟试题含解析_第2页
2024届安徽省合肥市庐阳区第一中学数学高一下期末质量跟踪监视模拟试题含解析_第3页
2024届安徽省合肥市庐阳区第一中学数学高一下期末质量跟踪监视模拟试题含解析_第4页
2024届安徽省合肥市庐阳区第一中学数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省合肥市庐阳区第一中学数学高一下期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若tan()=2,则sin2α=()A. B. C. D.2.采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,,,分组后某组抽到的号码为1.抽到的人中,编号落入区间的人数为()A.10 B. C.12 D.133.在中,设角,,的对边分别是,,,且,则一定是()A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形4.函数的值域为A.[1,] B.[1,2] C.[,2] D.[5.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1206.在中,角,,的对边分别是,,,若,则()A. B. C. D.7.已知角的终边经过点,则()A. B. C.-2 D.8.计算:的结果为()A.1 B.2 C.-1 D.-29.若三个实数a,b,c成等比数列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.410.已知数列的通项为,我们把使乘积为整数的叫做“优数”,则在内的所有“优数”的和为()A.1024 B.2012 C.2026 D.2036二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量夹角为,且,则__________.12.若角的终边过点,则______.13.己知函数,有以下结论:①的图象关于直线轴对称②在区间上单调递减③的一个对称中心是④的最大值为则上述说法正确的序号为__________(请填上所有正确序号).14.已知直线平面,,那么在平面内过点P与直线m平行的直线有________条.15.圆上的点到直线4x+3y-12=0的距离的最小值是16.已知,为锐角,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的圆心在轴上,且经过点,.(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)求圆的标准方程;(Ⅲ)过点的直线与圆相交于、两点,且,求直线的方程.18.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1//平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=2,求三棱锥C一A1DE的体积.19.为推动文明城市创建,提升城市整体形象,2018年12月30日盐城市人民政府出台了《盐城市停车管理办法》,2019年3月1日起施行.这项工作有利于市民养成良好的停车习惯,帮助他们树立绿色出行的意识,受到了广大市民的一致好评.现从某单位随机抽取80名职工,统计了他们一周内路边停车的时间t(单位:小时),整理得到数据分组及频率分布直方图如下:(1)从该单位随机选取一名职工,试估计这名职工一周内路边停车的时间少于8小时的概率;(2)求频率分布直方图中a,b的值.20.已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,试用θ表示ΔABC21.已知直线与圆相交于,两点.(1)若,求;(2)在轴上是否存在点,使得当变化时,总有直线、的斜率之和为0,若存在,求出点的坐标:若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

由两角差的正切得tan,化sin2α为tan的齐次式求解【题目详解】tan()=2,则则sin2α=故选:B【题目点拨】本题考查两角差的正切公式,考查二倍角公式及齐次式求值,意在考查公式的灵活运用,是基础题2、C【解题分析】

由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为an=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【题目详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为1,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【题目点拨】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.3、C【解题分析】

利用二倍角公式化简已知表达式,利用余弦定理化角为边的关系,即可推出三角形的形状.【题目详解】解:因为,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故选:.【题目点拨】本题考查三角形的形状的判断,余弦定理的应用,考查计算能力,属于中档题.4、D【解题分析】

因为函数,平方求出的取值范围,再根据函数的性质求出的值域.【题目详解】函数定义域为:,因为,又,所以的值域为.故选D.【题目点拨】本题考查函数的值域,此题也可用三角换元求解.求函数值域常用方法:单调性法,换元法,判别式法,反函数法,几何法,平方法等.5、B【解题分析】试题分析:根据频率分布直方图,得;该模块测试成绩不少于60分的频率是1-(0.005+0.015)×10=0.8,∴对应的学生人数是600×0.8=480考点:频率分布直方图6、D【解题分析】

由题意,再由余弦定理可求出,即可求出答案.【题目详解】由题意,,设,由余弦定理可得:,则.故选D.【题目点拨】本题考查了正、余弦定理的应用,考查了计算能力,属于中档题.7、B【解题分析】按三角函数的定义,有.8、B【解题分析】

利用恒等变换公式化简得的答案.【题目详解】故答案选B【题目点拨】本题考查了三角恒等变换,意在考查学生的计算能力.9、C【解题分析】

由实数a,b,c成等比数列,得b2【题目详解】由实数a,b,c成等比数列,得b2所以b=±2.故选C.【题目点拨】本题主要考查了等比数列的基本性质,属于基础题.10、C【解题分析】

根据优数的定义,结合对数运算,求得的范围,再用等比数列的前项和公式进行求和.【题目详解】根据优数的定义,令,则可得令,解得则在内的所有“优数”的和为:故选:C.【题目点拨】本题考查新定义问题,本质是考查对数的运算,等比数列前项和公式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.12、-2【解题分析】

由正切函数定义计算.【题目详解】根据正切函数定义:.故答案为-2.【题目点拨】本题考查三角函数的定义,掌握三角函数定义是解题基础.13、②④【解题分析】

根据三角函数性质,逐一判断选项得到答案.【题目详解】,根据图像知:①的图象关于直线轴对称,错误②在区间上单调递减,正确③的一个对称中心是,错误④的最大值为,正确故答案为②④【题目点拨】本题考查了三角函数的化简,三角函数的图像,三角函数性质,意在考查学生对于三角函数的综合理解和应用.14、1【解题分析】

利用线面平行的性质定理来进行解答.【题目详解】过直线与点可确定一个平面,由于为公共点,所以两平面相交,不妨设交线为,因为直线平面,所以,其它过点的直线都与相交,所以与也不会平行,所以过点且平行于的直线只有一条,在平面内,故答案为:1.【题目点拨】本题考查线面平行的性质定理,是基础题.15、【解题分析】

计算出圆心到直线的距离,减去半径,求得圆上的点到直线的最小距离.【题目详解】圆的圆心为,半径.圆心到直线的距离为,故最小距离为.【题目点拨】本小题主要考查圆上的点到直线距离最小值的求法,考查点到直线距离公式,属于基础题.16、【解题分析】

由题意求得,再利用两角和的正切公式求得的值,可得的值.【题目详解】,为锐角,且,即,.再结合,则,故答案为.【题目点拨】本题主要考查两角和的正切公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ)或.【解题分析】

(Ⅰ)利用垂直平分关系得到斜率及中点,从而得到结果;(Ⅱ)设圆的标准方程为,结合第一问可得结果;(Ⅲ)由题意可知:圆心到直线的距离为1,分类讨论可得结果.【题目详解】解:(Ⅰ)设的中点为,则.由圆的性质,得,所以,得.所以线段的垂直平分线的方程是.(II)设圆的标准方程为,其中,半径为().由圆的性质,圆心在直线上,化简得.所以圆心,,所以圆的标准方程为.(III)由(I)设为中点,则,得.圆心到直线的距离.(1)当的斜率不存在时,,此时,符合题意.(2)当的斜率存在时,设,即,由题意得,解得:.故直线的方程为,即.综上直线的方程或.【题目点拨】圆内一点为弦的中点时,则此点与圆心的连线和弦所在的直线垂直;解决圆的弦长有关问题,注意弦长一半、弦心距、半径构成的直角三角形的三边的勾股数之间的关系。18、(Ⅰ)见解析(Ⅱ)【解题分析】试题分析:(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为•S△A1DE•CD,运算求得结果试题解析:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∥DF.3分因为DF⊂平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱锥C﹣A1DE的体积为:==1.12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积19、(1);(2),.【解题分析】

(1)由频率分布表即可得解;(2)由频率分布直方图中小矩形的高为频率与组距的比值,观察频率分布表的数据即可得解.【题目详解】解:(1)记“从该单位随机选取一名职工,这名职工该周路边停车的时间少于8小时”为事件A,则;(2)由频率分布表可得:区间的频数为8,则,区间的频数为12,则.【题目点拨】本题考查了频率分布表及频率分布直方图,属基础题.20、(1)c=7或c=2.(1)=2sinθ+2【解题分析】试题分析:(Ⅰ)由题意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等变形得c1-9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周长f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函数的定义域和值域,求得f(θ)取得最大值.试题解析:(Ⅰ)∵a、b、c成等差,且公差为1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等变形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周长f(θ)=|AC|+|BC|+|AB|=,又,当,即时,f(θ)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论