




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京四中2024届数学高一下期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列选项正确的是()A.若,则B.若,则C.若,则D.若,则2.已知为等差数列,,则的值为()A.3 B.2 C. D.13.在中,,,,则的面积为A. B. C. D.4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为()A. B. C. D.5.如图所示四棱锥的底面为正方形,平面则下列结论中不正确的是()A. B.平面C.直线与平面所成的角等于30° D.SA与平面SBD所成的角等于SC与平面SBD所成的角6.若复数(是虚数单位)是纯虚数,则实数的值为()A. B. C. D.7.设函数,若函数恰有两个零点,则实数的取值范围为()A. B. C. D.8.一个三角形的三边长成等比数列,公比为,则函数的值域为()A.(,+∞) B.[,+∞) C.(,-1) D.[,-1)9.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.如图,E是平行四边形ABCD的边AD的中点,设等差数列的前n项和为,若,则()A.25 B. C. D.55二、填空题:本大题共6小题,每小题5分,共30分。11.102,238的最大公约数是________.12.在△ABC中,已知30,则B等于__________.13.若复数z满足z⋅2i=z2+1(其中i14.在ΔABC中,角A,B,C所对的对边分别为a,b,c,若A=30∘,a=7,b=215.若向量与的夹角为,与的夹角为,则______.16.把函数的图像上各点向右平移个单位,再把横坐标变为原来的一半,纵坐标扩大到原来的4倍,则所得的函数的对称中心坐标为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)解关于的不等式;(2)若关于的不等式的解集为,求实数的值.18.已知,,,求.19.已知向量,.(1)若,在集合中取值,求满足的概率;(2)若,在区间内取值,求满足的概率.20.已知数列的前项和为,满足,数列满足.(1)求数列、的通项公式;(2),求数列的前项和;(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.21.四棱柱中,底面为正方形,,为中点,且.(1)证明;(2)求点到平面的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
通过逐一判断ABCD选项,得到答案.【题目详解】对于A选项,若,代入,,故A错误;对于C选项,等价于,故C错误;对于D选项,若,则,故D错误,所以答案选B.【题目点拨】本题主要考查不等式的相关性质,难度不大.2、D【解题分析】
根据等差数列下标和性质,即可求解.【题目详解】因为为等差数列,故解得.故选:D.【题目点拨】本题考查等差数列下标和性质,属基础题.3、C【解题分析】
利用三角形中的正弦定理求出角B,利用三角形内角和求出角C,再利用三角形的面积公式求出三角形的面积,求得结果.【题目详解】因为中,,,,由正弦定理得:,所以,所以,所以,所以,故选C.【题目点拨】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得,从而求得,之后应用三角形面积公式求得结果.4、C【解题分析】
试题分析:从中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为,故选C.考点:古典概型5、C【解题分析】
根据空间中垂直关系的判定和性质,平行关系的判定和性质,以及线面角的相关知识,对选项进行逐一判断即可.【题目详解】对A:因为底面ABCD为正方形,故ACBD,又SD底面ABCD,AC平面ABCD,故SDAC,又BD平面SBD,SD平面SBD,故AC平面SBD,又SB平面SBD,故AC.故A正确;对B:因为底面ABCD为正方形,故AB//CD,又CD平面SCD,故AB//平面SCD.故B正确.对C:由A中推导可知AC平面SBD,故取AC与BD交点为O,连接SO,如图所示:则即为所求线面角,但该三角形中边长关系不确定,故线面角的大小不定,故C错误;对D:由AC平面SBD,故取AC与BD交点为O,连接SO,则即为SA和SC与平面SBD所成的角,因为,故,故D正确.综上所述,不正确的是C.故选:C.【题目点拨】本题综合考查线面垂直的性质和判定,线面平行的判定,线面角的求解,属综合基础题.6、C【解题分析】,且是纯虚数,,故选C.7、A【解题分析】
首先注意到,是函数的一个零点.当时,将分离常数得到,构造函数,画出的图像,根据“函数与函数有一个交点”结合图像,求得的取值范围.【题目详解】解:由恰有两个零点,而当时,,即是函数的一个零点,故当时,必有一个零点,即函数与函数必有一个交点,利用单调性,作出函数图像如下所示,由图可知,要使函数与函数有一个交点,只需即可.故实数的取值范围是.故选:A.【题目点拨】本小题主要考查已知函数零点个数,求参数的取值范围,考查数形结合的数学思想方法,属于中档题.8、D【解题分析】
由题意先设出三边为则由三边关系:两短边和大于第三边,分公比大于与公式在小于两类解出公比的取值范围,此两者的并集是函数的定义域,再由二次函数的性质求出它的值域,选出正确选项.【题目详解】解:设三边:则由三边关系:两短边和大于第三边,即
(1)当时,,即,解得;
(2)当时,为最大边,,即,解得,
综合(1)(2)得:,
又的对称轴是,故函数在上是减函数,在上是增函数,
由于时,与时,,
所以函数的值域为,故选:D.【题目点拨】本题考查等比数列的性质及二次函数的值域的求法,解答本题关键是熟练掌握等比数列的性质,能利用它建立不等式解出公比的取值范围得出函数的定义域,熟练掌握二次函数的性质也很重要,由此类题可以看出,扎实的双基,娴熟的基础知识与公式的记忆是解题的知识保障.9、A【解题分析】
根据和之间能否推出的关系,得到答案.【题目详解】由可得,由,得到或,,不能得到,所以“”是“”的充分不必要条件,故选:A.【题目点拨】本题考查充分不必要条件的判断,属于简单题.10、D【解题分析】
根据向量的加法和平面向量定理,得到和的值,从而得到等差数列的公差,根据等差数列求和公式,得到答案.【题目详解】因为E是平行四边形ABCD的边AD的中点,所以,因为,所以,,所以等差数列的公差,所以.故选:D.【题目点拨】本题考查向量的加法和平面向量定理,等差数列求和公式,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、34【解题分析】试题分析:根据辗转相除法的含义,可得238=2×102+34,102=3×34,所以得两个数102、238的最大公约数是34.故答案为34.考点:辗转相除法.12、【解题分析】
根据三角形正弦定理得到角,再由三角形内角和关系得到结果.【题目详解】根据三角形的正弦定理得到,故得到角,当角时,有三角形内角和为,得到,当角时,角故答案为【题目点拨】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.13、1【解题分析】设z=a+bi,a,b∈R,则由z⋅2则-2b=a2+b2+12a=014、32或【解题分析】
由余弦定理求出c,再利用面积公式即可得到答案。【题目详解】由于在ΔABC中,A=30∘,a=7,b=23,根据余弦定理可得:a2=b所以当c=1时,ΔABC的面积S=12bcsinA=32故ΔABC的面积等于32或【题目点拨】本题考查余弦定理与面积公式在三角形中的应用,属于中档题。15、【解题分析】
根据向量平行四边形法则作出图形,然后在三角形中利用正弦定理分析.【题目详解】如图所示,,,所以在中有:,则,故.【题目点拨】本题考查向量的平行四边形法则的运用,难度一般.在运用平行四边形法则时候,可以适当将其拆分为三角形,利用解三角形中的一些方法去解决问题.16、,【解题分析】
根据三角函数的图象变换,求得函数的解析式,进而求得函数的对称中心,得到答案.【题目详解】由题意,把函数的图像上各点向右平移个单位,可得,再把图象上点的横坐标变为原来的一半,可得,把函数纵坐标扩大到原来的4倍,可得,令,解得,所以函数的对称中心为.故答案为:.【题目点拨】本题主要考查了三角函数的图象变换,以及三角函数的对称中心的求解,其中解答中熟练三角函数的图象变换,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)①当时,不等式的解集为;②当时,由,则不等式的解集为;③当时,由,则不等式的解集为;(2)【解题分析】
(1)不等式,可化为,分三种情况讨论,分别利用一元二次不等式的解法求解即可;(2)不等可化为,根据1和4是方程的两根,利用韦达定理列方程求解即可.【题目详解】(1)不等式,可化为:.①当时,不等式的解集为;②当时,由,则不等式的解集为;③当时,由,则不等式的解集为;(2)不等可化为:.由不等式的解集为可知,1和4是方程的两根.故有,解得.由时方程为的根为1或4,则实数的值为1.【题目点拨】本题主要考查一元二次不等式的解法以及分类讨论思想的应用,属于中档题..分类讨论思想的常见类型
,⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的;
⑵问题中的条件是分类给出的;
⑶解题过程不能统一叙述,必须分类讨论的;
⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.18、11【解题分析】
根据题设条件,结合三角数的基本关系式,分别求得,和,再利用两角和的正切的公式,进行化简、运算,即可求解.【题目详解】由,由,可得又由,所以,由,得,可得,所以,即.【题目点拨】本题主要考查了两角和与差的正切函数的化简、求值问题,其中解答中熟记两角和与差的正切公式,准确运算是解答的关键,着重考查了推理与运算能力,试题有一定的难度,属于中档试题.19、(1)(2)【解题分析】
(1)首先求出包含的基本事件个数,由,由向量的坐标运算可得,列出满足条件的基本事件个数,根据古典概型概率计算公式即可求解.(2)根据题意全部基本事件的结果为,满足的基本事件的结果为,利用几何概型概率计算公式即可求解.【题目详解】(1),的所有取值共有个基本事件.由,得,满足包含的基本事件为,,,,,共种情形,故.(2)若,在上取值,则全部基本事件的结果为,满足的基本事件的结果为.画出图形如图,正方形的面积为,阴影部分的面积为,故满足的概率为.【题目点拨】本题考查了古典概型概率计算公式、几何概型概率计算公式,属于基础题.20、(1),;(2)见解析;(3)存在,.【解题分析】
(1)利用可得,从而可得为等比数列,故可得其通项公式.用累加法可求的通项.(2)利用分组求和法可求,注意就的奇偶性分类讨论.(3)根据的通项可得,故考虑的解可得满足条件的的值.【题目详解】(1)在数列中,当时,.当时,由得,因为,故,所以数列是以为首项,为公比的等比数列即.在数列中,当时,有,由累加法得,,.当时,也符合上式,所以.(2).当为偶数时,=;当为奇数时,=.(3)对任意的正整数,有,假设存在正整数,使得,则,令,解得,又为正整数,所以满足题意.【题目点拨】给定数列的递推关系,求数列的通项时,我们常需要对递推关系做变形构建新数列(新数列的通项容易求得),常见的递推关系、变形方法及求法如下:(1),用累加法;(2),可变形为,利用等比数列的通项公式可求的通项公式,两种方法都可以得到的通项公式.(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓库大门转让合同范本
- etc押金合同范本
- 出租工地合同范本
- 别墅临街出售合同范本
- 与安踏合作合同范本
- 供应提成合同范本
- 医用设备购销合同范本
- 上门医疗服务合同范例
- 中标方转让合同范本
- 美发合租合同范本
- app 购买合同范例
- 高二上学期物理(理科)期末试题(含答案)
- 2024年房地产经纪人《房地产经纪专业基础》考前冲刺必会试题库300题(含详解)
- 矿山生态修复工程不稳定斜坡治理工程设计
- 躲避球运动用球项目评价分析报告
- 风机盘管更换施工方案
- 河道整治与生态修复工程监理规划
- 2024年度委托创作合同:原创美术作品设计与委托制作3篇
- 建设工程招标代理合同(GF-2005-0215)(标准版)
- 剪映专业版教学课件
- 公司新建电源及大用户并网管理办法
评论
0/150
提交评论