2024届浙江省钱清中学数学高一第二学期期末质量跟踪监视试题含解析_第1页
2024届浙江省钱清中学数学高一第二学期期末质量跟踪监视试题含解析_第2页
2024届浙江省钱清中学数学高一第二学期期末质量跟踪监视试题含解析_第3页
2024届浙江省钱清中学数学高一第二学期期末质量跟踪监视试题含解析_第4页
2024届浙江省钱清中学数学高一第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省钱清中学数学高一第二学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件 B.B和C为互斥事件C.C与D是对立事件 D.B与D为互斥事件2.设正实数x,y,z满足x2-3xy+4y2-z=0,则当取得最小值时,x+2y-z的最大值为()A.0 B.C.2 D.3.若是2与8的等比中项,则等于()A. B. C. D.324.已知直线与直线平行,则实数m的值为()A.3 B.1 C.-3或1 D.-1或35.把函数的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),然后把图象向左平移个单位,则所得图形对应的函数解析式为()A. B.C. D.6.函数的对称中心是()A. B. C. D.7.设等差数列的前n项和为,若,则()A.3 B.4 C.5 D.68.已知集合,,,则()A. B. C. D.9.在等差数列{an}中,已知a1=2A.50 B.52 C.54 D.5610.已知,若将它的图象向右平移个单位长度,得到函数的图象,则函数的图象的一条对称轴的方程为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量=.12.辗转相除法,又名欧几里得算法,是求两个正整数之最大公约数的算法,它是已知最古老的算法之一,在中国则可以追溯至汉朝时期出现的《九章算术》.下图中的程序框图所描述的算法就是辗转相除法.若输入、的值分别为、,则执行程序后输出的的值为______.13.如果,,则的值为________(用分数形式表示)14.计算:______.15.已知数列的通项公式,则_______.16.已知正三棱锥的底面边长为6,所在直线与底面所成角为60°,则该三棱锥的侧面积为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列中,,.(1)求证:数列为等差数列,求数列的通项公式;(2)若数列的前项和为,求证:.18.如图所示,是一个矩形花坛,其中米,米.现将矩形花坛扩建成一个更大的矩形花坛,要求:在上,在上,对角线过点,且矩形的面积小于150平方米.(1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并确定函数的定义域;(2)当的长度是多少时,矩形的面积最小?并求最小面积.19.如图,在三棱锥中,侧面与侧面均为边长为2的等边三角形,,为中点.(1)证明:;(2)求点到平面的距离.20.如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.为的中点,为的中点,过点,,的平面交于.(1)求证:平面;(2)若时,求二面角的余弦值.21.已知圆经过(2,5),(﹣2,1)两点,并且圆心在直线yx上.(1)求圆的标准方程;(2)求圆上的点到直线3x﹣4y+23=0的最小距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据互斥事件和对立事件的概念,进行判定,即可求解,得到答案.【题目详解】由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B为不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环”可能发生,所以事件C和D为不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D为互斥事件,故选D.【题目点拨】本题主要考查了互斥事件和对立事件的概念及判定,其中解答中熟记互斥事件和对立事件的概念,准确判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、C【解题分析】

由题得z=x2+4y2-3xy≥4xy-3xy=xy(x,y,z>0),即z≥xy,≥1.当且仅当x=2y时等号成立,则x+2y-z=2y+2y-(4y2-6y2+4y2)=4y-2y2=-2(y2-2y)=-2[(y-1)2-1]=-2(y-1)2+2.当y=1时,x+2y-z有最大值2.故选C.3、B【解题分析】

利用等比中项性质列出等式,解出即可。【题目详解】由题意知,,∴.故选B【题目点拨】本题考查等比中项,属于基础题。4、B【解题分析】

两直线平行应该满足,利用系数关系及可解得m.【题目详解】两直线平行,可得(舍去).选B.【题目点拨】两直线平行的一般式对应关系为:,若是已知斜率,则有,截距不相等.5、D【解题分析】

函数的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),的系数变为原来的2倍,即为2,然后根据平移求出函数的解析式.【题目详解】函数的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),得到,把图象向左平移个单位,得到故选:.【题目点拨】本题考查函数的图象变换.准确理解变换规则是关键,属于中档题.6、C【解题分析】,设是奇函数,其图象关于原点对称,而函数的图象可由的图象向右平移一个单位,向下平移两个单位得到,所以函数的图象关于点对称,故选C.7、C【解题分析】

由又,可得公差,从而可得结果.【题目详解】是等差数列又,∴公差,,故选C.【题目点拨】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.8、C【解题分析】由题意得,因为,所以,所以,故,故选C.9、C【解题分析】

利用等差数列通项公式求得基本量d,根据等差数列性质可得a4【题目详解】设等差数列an公差为则a2+∴本题正确选项:C【题目点拨】本题考查等差数列基本量的求解问题,关键是能够根据等差数列通项公式构造方程求得公差,属于基础题.10、B【解题分析】分析:由左加右减,得出解析式,因为解析式为正弦函数,所以令,解出,对k进行赋值,得出对称轴.详解:由左加右减可得,解析式为正弦函数,则令,解得:,令,则,故选B.点睛:三角函数图像左右平移时,需注意要把x放到括号内加减,求三角函数的对称轴,则令等于正弦或余弦函数的对称轴公式,求出x解析式,即为对称轴方程.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】试题分析:由题意得,解得,故答案为.考点:分层抽样.12、【解题分析】

程序的运行功能是求,的最大公约数,根据辗转相除法可得的值.【题目详解】由程序语言知:算法的功能是利用辗转相除法求、的最大公约数,当输入的,,;,,可得输出的.【题目点拨】本题主要考查了辗转相除法的程序框图的理解,掌握辗转相除法的操作流程是解题关键.13、【解题分析】

先求出,可得,再代值计算即可.【题目详解】.故答案为:【题目点拨】本题考查了等差数列的前项和公式、累乘相消法,考查了学生的计算能力,属于基础题.14、【解题分析】

在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【题目详解】.故答案为:.【题目点拨】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.15、【解题分析】

本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【题目详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为1.【题目点拨】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.16、【解题分析】

画出图形,过P做底面的垂线,垂足O落在底面正三角形中心,即,因为,即可求出,所以.【题目详解】作于,因为为正三棱锥,所以,为中点,连结,则,过作⊥平面,则点为正三角形的中心,点在上,所以,,正三角形的边长为6,则,,,斜高,三棱锥的侧面积为:【题目点拨】此题考查正三棱锥,即底面为正三角形,侧面为等腰三角形的三棱锥,正四面体为四个面都是正三角形,画出图像,属于简单的立体几何题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解题分析】

(1)结合,构造数列,证明得到该数列为等差数列,结合等差通项数列计算方法,即可.(2)运用裂项相消法,即可.【题目详解】(1)由,(即),可得,所以,所以数列是以为首项,以2为公差的等差数列,所以,即.(2),所以,因为,所以.【题目点拨】本道题考查了等差数列通项计算方法和裂项相消法,难度一般.18、(1),;(2),.【解题分析】

(1)由可得,,∴.由,且,解得,∴函数的定义域为.(2)令,则,,当且仅当时,取最小值,故当的长度为米时,矩形花坛的面积最小,最小面积为96平方米.考点:1.分式不等式;2.均值不等式.19、(1)见解析;(2)【解题分析】

(1)由题设AB=AC=SB=SC=SA,连结OA,推导出SO⊥BC,SO⊥AO,由此能证明SO⊥平面ABC;(2)设点B到平面SAC的距离为h,由VS﹣BAC=VB﹣SAC,能求出点B到平面SAC的距离.【题目详解】(1)由题设,连结,为等腰直角三角形,所以,且,又为等腰三角形,故,且,从而.所以为直角三角形,.又.所以平面,故AC⊥SO.(2)设B到平面SAC的距离为,则由(Ⅰ)知:三棱锥即∵为等腰直角三角形,且腰长为2.∴∴∴△SAC的面积为=△ABC面积为,∴,∴B到平面SAC的距离为【题目点拨】本题考查线面垂直的证明,考查点到平面距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查函数与方程思想、数形结合思想,是中档题.20、(1)证明见解析;(2)【解题分析】

(1)首先证明平面,由平面平面,可说明,由此可得四边形为平行四边形,即可证明平面;(2)延长交于点,过点作交直线于点,则即为二面角的平面角,求出的余弦值即可得到答案.【题目详解】(1)∵为矩形∴,平面,平面∴平面.又因为平面平面,∴.为中点,为中点,所以平行且等于,即四边形为平行四边形所以,平面,平面所以平面(2)不妨设,.因为为中点,为等边三角形,所以,,且∵,所以有平面,故因为平面平面∴平面,又,∴平面,则延长交于点,过点作交直线于点,由于平行且等于,所以为中点,,由于,,,所以平面,则,所以即为二面角的平面角在中,,,所以,所以.【题目点拨】本题考查线面平行的证明,以及二面角的余弦值的求法,考查学生空间想象能力,计算能力,由一定综合性.21、(1)(x﹣2)2+(y﹣1)2=16(2)1【解题分析】

(1)先求出圆心的坐标和圆的半径,即得圆的标准方程;(2)求出圆心到直线3x﹣4y+23=0的距离即得解.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论