版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西百色市普通高中数学高一第二学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在ΔABC中,角A,B,C的对边分别为a,b,c,若sinA4a=A.-45 B.35 C.2.已知函数,如果不等式的解集为,那么不等式的解集为()A. B.C. D.3.已知α、β为锐角,cosα=,tan(α−β)=−,则tanβ=()A. B.3 C. D.4.已知a,b,,且,,则()A. B. C. D.5.如图,在矩形中,,,点为的中点,点在边上,点在边上,且,则的最大值是()A. B. C. D.6.若复数(是虚数单位)是纯虚数,则实数的值为()A. B. C. D.7.如图,这是某校高一年级一名学生七次月考数学成绩(满分100分)的茎叶图去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别是()A.87,9.6 B.85,9.6 C.87,5,6 D.85,5.68.已知a,b,c满足,那么下列选项一定正确的是()A. B. C. D.9.设a,b,c为的内角所对的边,若,且,那么外接圆的半径为A.1 B. C.2 D.410.若直线xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列的首项为,公比为,记,则数列的最大项是第___________项.12.已知函数的定义域为,则实数的取值范围为_____.13.在等差数列中,已知,,则________.14.已知球的一个内接四面体中,,过球心,若该四面体的体积为,且,则球的表面积的最小值为_________.15.对于下列数排成的数阵:它的第10行所有数的和为________16.直线与直线垂直,则实数的值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=x2(1)写出函数g(x)的解析式;(2)若直线y=ax+1与曲线y=g(x)有三个不同的交点,求a的取值范围;(3)若直线y=ax+b与曲线y=f(x)在x∈[-2,1]内有交点,求(a-1)218.在中,角、、的对边分别为、、,为的外接圆半径.(1)若,,,求;(2)在中,若为钝角,求证:;(3)给定三个正实数、、,其中,问:、、满足怎样的关系时,以、为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情兄下,用、、表示.19.某同学假期社会实践活动选定的课题是“节约用水研究”.为此他购买了电子节水阀,并记录了家庭未使用电子节水阀20天的日用水量数据(单位:)和使用了电子节水阀20天的日用水量数据,并利用所学的《统计学》知识得到了未使用电子节水阀20天的日平均用水量为0.48,使用了电子节水阀20天的日用水量数据的频率分布直方图如下图:(1)试估计该家庭使用电子节水阀后,日用水量小于0.35的概率;(2)估计该家庭使用电子节水阀后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)20.在等差数列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比数列{bn}的前三项.(1)求数列{an}和{bn}的通项公式;(2)设cn=an·bn,求数列{cn}的前n项和Sn.21.已知{an}是等差数列,设数列{bn}的前n项和为Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=1.(1)求{an}和{bn}的通项公式;(2)令cn=anbn(n∈N*),求{cn}的前n项和Tn
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
由正弦定理可得3sinBsinA=4sin【题目详解】∵sinA4a∵sinA>0,∴tanB=4故选:B.【题目点拨】本题考查了正弦定理和同角三角函数的基本关系,属于基础题.2、A【解题分析】
一元二次不等式大于零解集是,先判断二次项系数为负,再根据根与系数关系,可求出a,b的值,代入解析式,求解不等式.【题目详解】由的解集是,则故有,即.由解得或故不等式的解集是,故选:A.【题目点拨】对于含参数的一元二次不等式需要先判断二次项系数的正负,再进一步求解参数.3、B【解题分析】
利用角的关系,再利用两角差的正切公式即可求出的值.【题目详解】因为,且为锐角,则,所以,因为,所以故选B.【题目点拨】主要考查了两角差的正切公式,同角三角函数的平方关系,属于中档题.对于给值求值问题,关键是寻找已知角(条件中的角)与未知角(问题中的角)的关系,用已知角表示未知角,从而将问题转化为求已知角的三角函数值,再利用两角和与差的三角函数公式、二倍角公式以及诱导公式即可求出.4、A【解题分析】
利用不等式的基本性质以及特殊值法,即可得到本题答案.【题目详解】由不等式的基本性质有,,故A正确,B不正确;当时,,但,故C、D不正确.故选:A【题目点拨】本题主要考查不等式的基本性质,属基础题.5、A【解题分析】
把线段最值问题转化为函数问题,建立函数表达式,从而求得最值.【题目详解】设,,,,,,,,,,的最大值是.故选A.【题目点拨】本题主要考查函数的实际应用,建立合适的函数关系式是解决此题的关键,意在考查学生的分析能力及数学建模能力.6、C【解题分析】,且是纯虚数,,故选C.7、D【解题分析】
去掉一个最高分和一个最低分后,所剩数据为82,84,84,86,89,由此能求出所剩数据的平均数和方差.【题目详解】平均数,方差,选D.【题目点拨】本题考查所剩数据的平均数和方差的求法,考查茎叶图、平均数、方差的性质等基础知识,考查运算求解能力,是基础题.8、D【解题分析】
c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性质即可得出.【题目详解】∵c<b<a,且ac<1,∴c<1且a>1,b与1的大小关系不定.∴满足bc>ac,ac<ab,故选D.【题目点拨】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.9、A【解题分析】
由得b2+c2-a2=bc.利用余弦定理,可得A=.再利用正弦定理可得2R=,可得R.【题目详解】∵,∴,整理得b2+c2-a2=bc,根据余弦定理cosA=,可得cosA=∵A∈(0,π),∴A=由正弦定理可得2R==,解得R=1,故选A【题目点拨】已知三边关系,可转化为接近余弦定理的形式,直接运用余弦定理理解三角形,注意整体代入思想.10、C【解题分析】
将1,2代入直线方程得到1a+2【题目详解】将1,2代入直线方程得到1a+b=(a+b)(当a=2故答案选C【题目点拨】本题考查了直线方程,均值不等式,1的代换是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
求得,则可将问题转化为求使得最大且使得为偶数的正整数的值,利用二次函数的基本性质求解即可.【题目详解】由等比数列的通项公式可得,,则问题转化为求使得最大且使得为偶数的正整数的值,,当时,取得最大值,此时为偶数.因此,的最大项是第项.故答案为:.【题目点拨】本题考查等比数列前项积最值的计算,将问题进行转化是解题的关键,考查分析问题和解决问题的能力,属于中等题.12、【解题分析】
根据对数的真数对于0,再结合不等式即可解决.【题目详解】函数的定义域为等价于对于任意的实数,恒成立当时成立当时,等价于综上可得【题目点拨】本题主要考查了函数的定义域以及不等式恒成立的问题,函数的定义域常考的由1、,2、,3、.属于基础题.13、-16【解题分析】
设等差数列的公差为,利用通项公式求出即可.【题目详解】设等差数列的公差为,得,则.故答案为【题目点拨】本题考查了等差数列通项公式的应用,属于基础题.14、【解题分析】
求出面积的最大值,结合棱锥的体积可得到平面距离的最小值,进一步求得球的半径的最小值得答案.【题目详解】解:在中,由,且,
得,得.
当且仅当时,有最大值1.
过球心,且四面体的体积为1,
∴三棱锥的体积为.
则到平面的距离为.
此时的外接圆的半径为,则球的半径的最小值为,
∴球O的表面积的最小值为.
故答案为:.【题目点拨】本题考查多面体外接球表面积最值的求法,考查逻辑思维能力与推理运算能力,考查空间想象能力,是中档题.15、【解题分析】
由题意得第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,再根据奇数为负数,偶数为正数,得到第10行的各个数,由此能求出第10行所有数的和.【题目详解】第1行1个数,第2行2个数,则第9行9个数,故第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,且奇数为负数,偶数为正数,故第10行所有数的和为,故答案为:.【题目点拨】本题以数阵为背景,观察数列中项的特点,求数列通项和前项和,考查逻辑推理能力和运算求解能力,求解时要注意等差数列性质的合理运用.16、【解题分析】
由题得(-1),解之即得a的值.【题目详解】由题得(-1),所以a=2.故答案为;2【题目点拨】本题主要考查两直线垂直的斜率关系,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)g(x)=0,-x2【解题分析】
(1)先分类讨论求出|f(x)|的解析式,即得函数g(x)的解析式;(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x⩽-2或x⩾1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1,y=-x2-x+2,-2<x<1,消去y得x2+(a+1)x-1=0.令φ(x)=x2+(a+1)x-1,写出a应满足条件解得;(3)由方程组y=ax+b,y=x2+x-2,消去y得x2+(1-a)x-2-b=0.由题意知方程在[-2,1]内至少有一个实根,设两根为x【题目详解】(1)当f(x)=x2+x-2≥0,得x≥1或x≤-2当f(x)=x2+x-2<0,得∴g(x)=(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x≤-2或x≥1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1y=-x2-x+2,-2<x<1,消去令φ(x)=x2+(a+1)x-1a≠0Δ=解得-1<a<0或0<a<12,所以a(3)由方程组y=ax+by=x2+x-2,消去由题意知方程在[-2,1]内至少有一个实根,设两根为x1不妨设x1∈[-2,1],x2∈R∴(a-1)==≥2×1=2当且仅当x1所以(a-1)2+(b+3)【题目点拨】本题考查了函数与方程,涉及了分段函数、零点、韦达定理等内容,综合性较强,属于难题.18、(1);(2)见解析;(3)见解析.【解题分析】
(1)利用正弦定理求出的值,然后利用余弦定理求出的值;(2)由余弦定理得出可得证;(3)分类讨论判断三角形的形状与两边、的关系,以及与直径的大小的比较,分类讨论即可.【题目详解】(1)由正弦定理得,所以,由余弦定理得,化简得.,解得;(2)由于为钝角,则,由于,,得证;(3)①当或时,所求不存在;②当且时,,所求有且只有一个,此时;③当时,都是锐角,,存在且只有一个,;④当时,所求存在两个,总是锐角,可以是钝角也可以是锐角,因此所求存在,当时,,,,,;当时,,,,,.【题目点拨】本题综合考查了三角形形状的判断,考查了解三角形、三角形的外接圆等知识,综合性较强,尤其是第三问需要根据、两边以及直径的大小关系确定三角形的形状,再在这种情况下求第三边的表达式,本解法主观性较强,难度较大.19、(1)0.48(2)()【解题分析】
(1)计算日用水量小于0.35时,频率分布直方图中长方形面积之和即可;(2)根据频率分布直方图计算出使用电子节水阀后日均节水量的平均值,再求出年节水量即可.【题目详解】(1)根据直方图,该家庭使用电子节水阀后20天日用水量小于0.35的频率为,因此该家庭使用电子节水阀后日用水量小于0.35的概率的估计值为0.48.(2)该家庭使用了电子节水阀后20天日用水量的平均数为.估计使用电子节水阀后,一年可节省水().【题目点拨】本题考查对频率分布直方图的理解,以及由频率分布直方图计算平均数,属基础题.20、(1)bn=3n-1;(2)Sn=(n-1)·3n+1【解题分析】
(1)由a1,a2,a5是等比数列{bn}的前三项得,a22=a1·a5⇒(a1+d)2=a1·(a1+4d)··⇒a12+2a1d+d2=a12+4a1d⇒d2=2a1d,又d≠0,所以d=2a1=2,从而an=a1+(n-1)d=2n-1,则b1=a1=1,b2=a2=3,则等比数列{bn}的公比q=3,从而bn=3n-1(2)由(1)得,cn=an·bn=(2n-1)·3n-1,则Sn=1·1+3·3+5·32
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单词卡印刷品产业链招商引资的调研报告
- 个人用纸香皂产品供应链分析
- 商业评估行业经营分析报告
- 用户可编程的未配置拟人机器人细分市场深度研究报告
- 发掘领域的研究行业经营分析报告
- 基金投资咨询行业市场调研分析报告
- 大米抛光机产品供应链分析
- 冷热饮料机出租行业营销策略方案
- 移动无线电话细分市场深度研究报告
- 家用电动水果榨汁机产品供应链分析
- 天翼云从业者认证考试题库及答案
- 旅游景区的提升规划方案
- 国家能源集团国神公司招聘笔试题库2024
- 扬州树人学校2024-2025七年级上学期9月月考数学试卷及答案
- 课件:七年级道德与法治上册(统编版2024)-【新教材解读】义务教育教材内容解读课件
- 002医疗器械质量安全关键岗位人员岗位说明
- 2024-2030年中国木制品行业市场深度发展趋势与前景展望战略分析报告
- 2024年新人教版部编本四年级上数学教材深度解读
- 《追求远大理想坚定崇高信念》课件
- 酒店自助入住系统安装协议
- 剧院物业管理服务标准
评论
0/150
提交评论