版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆乌鲁木齐市第四中学数学高一第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的模为1,且在方向上的投影为,则与的夹角为()A.30° B.60° C.120° D.150°2.已知,,,若点是所在平面内一点,且,则的最大值等于().A. B. C. D.3.将函数y=sin2x的图象向右平移A.在区间[-πB.在区间[5πC.在区间[-πD.在区间[π4..若且,直线不通过()A.第一象限 B.第二象限 C.第三象限 D.第四象限,5.关于x的不等式的解集是,则关于x的不等式的解集是()A. B.C. D.6.若三角形三边的长度为连续的三个自然数,则称这样的三角形为“连续整边三角形”.下列说法正确的是()A.“连续整边三角形”只能是锐角三角形B.“连续整边三角形”不可能是钝角三角形C.若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形有且仅有1个D.若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形可能有2个7.在前项和为的等差数列中,若,则=()A. B. C. D.8.是边AB上的中点,记,,则向量()A. B.C. D.9.已知,是平面,m,n是直线,则下列命题不正确的是()A.若,则 B.若,则C.若,则 D.若,则10.对于空间中的两条直线,和一个平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.的内角的对边分别为.若,则的面积为__________.12.若关于的方程()在区间有实根,则最小值是____.13.现用一半径为,面积为的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________.14.若三边长分别为3,5,的三角形是锐角三角形,则的取值范围为______.15.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是,其中是的内角的对边为.若,且,则面积的最大值为________.16.已知直线与相互垂直,且垂足为,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知以点为圆心的圆C被直线截得的弦长为.(1)求圆C的标准方程:(2)求过与圆C相切的直线方程:(3)若Q是直线上的动点,QR,QS分别切圆C于R,S两点.试问:直线RS是否恒过定点?若是,求出恒过点坐标:若不是,说明理由.18.数学的发展推动着科技的进步,正是基于线性代数、群论等数学知识的极化码原理的应用,华为的5G技术领先世界.目前某区域市场中5G智能终端产品的制造由H公司及G公司提供技术支持据市场调研预测,5C商用初期,该区域市场中采用H公司与G公司技术的智能终端产品分别占比及假设两家公司的技术更新周期一致,且随着技术优势的体现每次技术更新后,上一周期采用G公司技术的产品中有20%转而采用H公司技术,采用H公司技术的仅有5%转而采用G公司技术设第n次技术更新后,该区域市场中采用H公司与G公司技术的智能终端产品占比分别为及,不考虑其它因素的影响.(1)用表示,并求实数使是等比数列;(2)经过若干次技术更新后该区域市场采用H公司技术的智能终端产品占比能否达到75%以上?若能,至少需要经过几次技术更新;若不能,说明理由?(参考数据:)19.已知向量.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的的集合.20.已知函数.(1)当时,解不等式;(2)若不等式对恒成立,求m的取值范围.21.已知向量,满足,,且.(1)求;(2)在中,若,,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
根据投影公式,直接得到结果.【题目详解】,.故选A.【题目点拨】本题考查了投影公式,属于简单题型.2、A【解题分析】以为坐标原点,建立平面直角坐标系,如图所示,则,,,即,所以,,因此,因为,所以的最大值等于,当,即时取等号.考点:1、平面向量数量积;2、基本不等式.3、A【解题分析】
函数y=sin2x的图象向右平移y=sin2kπ-π单调递减区间:2kπ+π2≤2x-π3【题目详解】本题考查了正弦型函数图象的平移变换以及求正弦型函数的单调区间.4、D【解题分析】
因为且,所以,,又直线可化为,斜率为,在轴截距为,因此直线过一二三象限,不过第四象限.故选:D.5、D【解题分析】
由不等式与方程的关系可得且,则等价于,再结合二次不等式的解法求解即可.【题目详解】解:由关于x的不等式的解集是,由不等式与方程的关系可得且,则等价于等价于,解得,即关于x的不等式的解集是,故选:D.【题目点拨】本题考查了不等式与方程的关系,重点考查了二次不等式的解法,属基础题.6、C【解题分析】
举例三边长分别是的三角形是钝角三角形,否定A,B,通过计算求出最大角是最小角的二倍的三角形,从而可确定C、D中哪个正确哪个错误.【题目详解】三边长分别是的三角形,最大角为,则,是钝角,三角形是钝角三角形,A,B都错,如图中,,,是的平分线,则,∴,,∴,,又由是的平分线,得,∴,解得,∴“连续整边三角形”中最大角是最小角的2倍的三角形只有一个,边长分别为4,5,6,C正确,D错误.故选D.【题目点拨】本题考查余弦定理,考查命题的真假判断,数学上要说明一个命题是假命题,只要举一个反例即可,而要说明它是真命题,则要进行证明.7、C【解题分析】
利用公式的到答案.【题目详解】项和为的等差数列中,故答案选C【题目点拨】本题考查了等差数列的前N项和,等差数列的性质,利用可以简化计算.8、C【解题分析】由题意得,∴.选C.9、D【解题分析】
由题意找到反例即可确定错误的选项.【题目详解】如图所示,在正方体中,取直线m为,平面为,满足,取平面为平面,则的交线为,很明显m和n为异面直线,不满足,选项D错误;如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,所以A正确;如果两个平面与同一条直线垂直,则这两个平面平行,所以B正确;由A选项和面面垂直的判定定理可得C也正确.本题答案为D.【题目点拨】本题主要考查线面关系有关命题真假的判断,意在考查学生的转化能力和逻辑推理能力,属基础题.10、C【解题分析】
依次分析每个选项中两条直线与平面的位置关系,确定两条直线的位置关系即可.【题目详解】平行于同一平面的两条直线不一定相互平行,故选项A错误,平行于平面的直线不一定与该平面内的直线平行,故选项B错误,垂直于平面的直线,垂直于与该平面平行的所有线,故选项C正确,垂直于同一平面的两条直线相互平行,故选项D错误.故选:C.【题目点拨】本题考查了直线与平面位置关系的辨析,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【题目详解】由余弦定理得,所以,即解得(舍去)所以,【题目点拨】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.12、【解题分析】
将看作是关于的直线方程,则表示点到点的距离的平方,根据距离公式可求出点到直线的距离最小,再结合对勾函数的单调性,可求出最小值。【题目详解】将看作是关于的直线方程,表示点与点之间距离的平方,点到直线的距离为,又因为,令,在上单调递增,所以,所以的最小值为.【题目点拨】本题主要考查点到直线的距离公式以及对勾函数单调性的应用,意在考查学生转化思想的的应用。13、【解题分析】分析:由圆锥的几何特征,现用一半径为,面积为的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,圆锥的母线长等于扇形的半径,由此计算出圆锥的高,代入圆锥体积公式,即可求出答案.解析:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器的高和底面半径分别为h、r,则由题意得R=10,由,得,由得.由可得.该容器的容积为.故答案为.点睛:涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.14、【解题分析】
由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得范围,若是最大边,则,解得范围,即可得出.【题目详解】解:由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得.若是最大边,则,解得.综上可得:的取值范围为.故答案为:.【题目点拨】本题考查了不等式的性质与解法、余弦定理、分类讨论方法,考查了推理能力与计算能力,属于中档题.15、【解题分析】
根据正弦定理和余弦定理,由可得,再由及函数求最值的知识,即可求解.【题目详解】,又,,时,面积的最大值为.故答案为:【题目点拨】本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了理解辨析能力与运算求解能力,属于中档题.16、【解题分析】
先由两直线垂直,可求出的值,将垂足点代入直线的方程可求出的点,再将垂足点代入直线的方程可求出的值,由此可计算出的值.【题目详解】,,解得,直线的方程为,即,由于点在直线上,,解得,将点的坐标代入直线的方程得,解得,因此,.故答案为:.【题目点拨】本题考查了由两直线垂直求参数,以及由两直线的公共点求参数,考查推理能力与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或(3)直线RS恒过定点【解题分析】
(1)由弦长可得,进而求解即可;(2)分别讨论直线的斜率存在与不存在的情况,再利用圆心到直线距离等于半径求解即可;(3)由QR,QS分别切圆C于R,S两点,可知,在以为直径的圆上,设为,则可得到以为直径的圆的方程,与圆联立可得,由求解即可【题目详解】(1)由题,设点到直线的距离为,则,则弦长,解得,所以圆的标准方程为:(2)当切线斜率不存在时,直线方程为,圆心到直线距离为2,故此时相切;当切线斜率存在时,设切线方程为,即,则,解得,则直线方程为,即,综上,切线方程为或(3)直线RS恒过定点,由题,,则,在以为直径的圆上,设为,则以为直径的圆的方程为:,整理可得,与圆:联立可得:,即,令,解得,故无论取何值时,直线恒过定点【题目点拨】本题考查圆的方程,考查已知圆外一点求切线方程,考查直线恒过定点问题18、(1),;(2)见解析【解题分析】
(1)根据题意经过次技术更新后,通过整理得到,构造是等比数列,求出,得证;(2)由(1)可求出通项,令,通过相关计算即可求出n的最小值,从而得到答案.【题目详解】(1)由题意,可设5商用初期,该区域市场中采用H公司与G公司技术的智能终端产品的占比分别为.易知经过次技术更新后,则,①由①式,可设,对比①式可知.又.从而当时,是以为首项,为公比的等比数列.(2)由(1)可知,所以经过次技术更形后,该区域市场采用H公司技术的智能终端产品占比.由题意,令,得.故,即至少经过6次技术更新,该区域市场采用H公司技术的智能终端产品占比能达到75%以上.【题目点拨】本题主要考查数列的实际应用,等比数列的证明,数列与不等式的相关计算,综合性强,意在考查学生的阅读理解能力,转化能力,分析能力,计算能力,难度较大.19、(1),值域为(2)【解题分析】
(1)根据向量的数量积,得到函数解析式,再根据正弦函数的性质,即可得出结果;(2)先由题意,将不等式化为,结合正弦函数的性质,即可得出结果.【题目详解】解:(1),由,得,,,在区间上的值域为(2)由,得,即所以解得,的解集为【题目点拨】本题主要考查正弦型函数的值域,以及三角不等式,熟记正弦函数的性质即可,属于常考题型.20、(1)见解析;(2)【解题分析】
(1)当m>﹣2时,f(x)≥m;即(m+1)x2﹣mx+m﹣1≥m,因式分解,对m进行讨论,可得解集;(2)转化为x∈[﹣1,1]恒成立,分离参数,利用基本不等式求最值求解m的取值范围.【题目详解】(1)当时,;即.可得:.∵①当时,即.不等式的解集为②当时,.∵,∴不等式的解集为③当时,.∵,∴不等式的解集为综上:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道路工程机械加盟合同
- 服装行业合伙协议范本
- 政府专项贷款合同模板
- 共同经营电子产品商店协议书范本
- 账户监管协议书范例
- 标准范本:2024年购销合同协议书
- 2024年商品买卖合同范例
- 现代室内装潢设计合同范本
- 个人住房装修合同2024年
- 陕西省汉中市普通高中十校联盟2024年秋季学期高一年级期中考试语文试题
- 道路运输安全事故报告、统计与调查处理制度
- 道亨送电线路三维设计平台使用培训ppt模板
- 民族式摔跤竞赛规则
- 不合理处方登记表
- 国内外利用活性炭处理硫化氢的原理
- 07版监理收费标准插入法计算器
- 重庆市七年级数学上学期期中试题新人教版
- 08S305-小型潜水泵选用及安装图集
- 吉林省长春市东北师大附中2019-2020上学期——九年级数学大练习题试卷
- 新能源汽车充电桩运营平台建设商业计划书
- 图形创意-表现手法(课堂PPT)课件
评论
0/150
提交评论