2024届安徽省定远育才学校数学高一下期末学业水平测试模拟试题含解析_第1页
2024届安徽省定远育才学校数学高一下期末学业水平测试模拟试题含解析_第2页
2024届安徽省定远育才学校数学高一下期末学业水平测试模拟试题含解析_第3页
2024届安徽省定远育才学校数学高一下期末学业水平测试模拟试题含解析_第4页
2024届安徽省定远育才学校数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省定远育才学校数学高一下期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各角中与角终边相同的角是A. B. C. D.2.已知函数在区间上有最大值,则实数的取值范围是()A. B. C. D.3.若关于x的不等式x-1-x-2≥A.0,1 B.-1,0 C.-∞,-1∪0,4.已知β为锐角,角α的终边过点(3,4),sin(α+β)=,则cosβ=()A. B. C. D.或5.已知,,,则,,的大小关系为()A. B. C. D.6.已知,若,则的值是().A.-1 B.1 C.2 D.-27.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.则获得复赛资格的人数为()A.640 B.520 C.280 D.2408.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则A. B.C. D.9.若,,则方程有实数根的概率为()A. B. C. D.10.若直线经过A(1,0),B(2,3)两点,则直线A.135° B.120° C.60° D.45°二、填空题:本大题共6小题,每小题5分,共30分。11.执行右边的程序框图,若输入的是,则输出的值是.12.在中,,则_____________13.函数的最小值为____________.14.设向量,定义一种向量积:.已知向量,点P在的图象上运动,点Q在的图象上运动,且满足(其中O为坐标原点),则的单调增区间为________.15.三棱锥P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,侧面PAB是等边三角形且与底面ABC垂直,则该三棱锥的外接球表面积为_____.16.求值:_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P~ABCD中,底面ABCD为矩形,E,F分别为AD,PB的中点,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求证:EF∥平面PCD;(2)设G为AB中点,求证:平面EFG⊥平面PCD.18.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔,速度为,飞行员在处先看到山顶的俯角为18°30′,经过后又在处看到山顶的俯角为81°(1)求飞机在处与山顶的距离(精确到);(2)求山顶的海拔高度(精确到)参考数据:,19.已知函数.(1)求的最小正周期,并求其单调递减区间;(2)的内角,,所对的边分别为,,,若,且为钝角,,求面积的最大值.20.已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.21.已知函数的图象关于直线对称,且图象上相邻两个最高点的距离为.(1)求与的值;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

根据终边相同角的概念,即可判断出结果.【题目详解】因为,所以与是终边相同的角.故选B【题目点拨】本题主要考查终边相同的角,熟记有关概念即可,属于基础题型.2、B【解题分析】因为,所以由题设在只有一个零点且单调递减,则问题转化为,即,应选答案B.点睛:解答本题的关键是如何借助题设条件建立不等式组,这是解答本题的难点,也是解答好本题的突破口,如何通过解不等式使得问题巧妙获解.3、D【解题分析】x-1-x-2=x-1-∵关于x的不等式x-1-∴a2+a-1>1,即解得a>1或∴实数a的取值范围为-∞,-2∪4、B【解题分析】

由题意利用任意角的三角函数的定义求得sinα和cosα,再利用同角三角函数的基本关系求得cos(α+β)的值,再利用两角差的余弦公式求得cosβ=cos[(α+β)﹣α]的值.【题目详解】β为锐角,角α的终边过点(3,4),∴sinα,cosα,sin(α+β)sinα,∴α+β为钝角,∴cos(α+β),则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα••,故选B.【题目点拨】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、两角和差的余弦公式的应用,属于基础题.5、D【解题分析】

利用指数函数、对数函数的单调性直接求解.【题目详解】解:因为,,所以,,的大小关系为.故选:D.【题目点拨】本题考查三个数的大小比较,考查指数函数、对数函数的单调性等基础知识,属于基础题.6、C【解题分析】

先求出的坐标,再利用向量平行的坐标表示求出c的值.【题目详解】由题得,因为,所以2(c-2)-2×0=0,所以c=2.故选C【题目点拨】本题主要考查向量的坐标计算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.7、B【解题分析】

由频率分布直方图得到初赛成绩大于90分的频率,由此能求出获得复赛资格的人数.【题目详解】初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,由频率分布直方图得到初赛成绩大于90分的频率为:1﹣(0.0025+0.0075+0.0075)×20=0.1.∴获得复赛资格的人数为:0.1×800=2.故选:B.【题目点拨】本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,是基础题.8、D【解题分析】

由平面向量基本定理和向量运算求解即可【题目详解】根据题意得:,又,,所以.故选D.【题目点拨】本题主要考查了平面向量的基本定理的简单应用,属于基础题.9、B【解题分析】方程有实数根,则:,即:,则:,如图所示,由几何概型计算公式可得,满足题意的概率值为:.本题选择B选项.10、C【解题分析】

利用斜率公式求出直线AB,根据斜率值求出直线AB的倾斜角.【题目详解】直线AB的斜率为kAB=3-02-1【题目点拨】本题考查直线的倾斜角的求解,考查直线斜率公式的应用,考查计算能力,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、24【解题分析】

试题分析:根据框图的循环结构,依次;;;.跳出循环输出.考点:算法程序框图.12、【解题分析】

先由正弦定理得到,再由余弦定理求得的值.【题目详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【题目点拨】本题考查了正弦定理和余弦定理的运用,属于基础题.13、【解题分析】

将函数构造成的形式,用换元法令,在定义域上根据新函数的单调性求函数最小值,之后可得原函数最小值。【题目详解】由题得,,令,则函数在递增,可得的最小值为,则的最小值为.故答案为:【题目点拨】本题考查了换元法,以及函数的单调性,是基础题。14、【解题分析】

设,,由求出的关系,用表示,并把代入即得,后利用余弦函数的单调性可得增区间.【题目详解】设,,由得:,∴,,∵,∴,,即,令,得,∴增区间为.故答案为:.【题目点拨】本题考查新定义,正确理解新定义运算是解题关键.考查三角函数的单调性.利用新定义建立新老图象间点的联系,求出新函数的解析式,结合余弦函数性质求得增区间.15、【解题分析】

求出的外接圆半径,的外接圆半径,求出外接球的半径,即可求出该三棱锥的外接球的表面积.【题目详解】由题意,设的外心为,的外心为,则的外接圆半径,在中,因为,由余弦定理可得,所以,所以的外接圆半径,在等边中,由,所以,所以,设球心为,球的半径为,则,又由面,面,则,所以该三棱锥的外接球的表面积为.故答案为:.【题目点拨】本题主要考查了三棱锥的外接球的表面积的求解,其中解答中熟练应用空间几何体的结构特征,确定球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.16、【解题分析】

根据同角三角函数的基本关系:,以及反三角函数即可解决。【题目详解】由题意.故答案为:.【题目点拨】本题主要考查了同角三角函数的基本关系,同角角三角函数基本关系主要有:,.属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解题分析】

(1)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(2)通过证明,证得平面,由此证得平面,从而证得平面平面.【题目详解】(1)证明:取PC的中点H,连接FH则FH∥BC,FH,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四边形EFHD为平行四边形,∴EF∥DH,又DH⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD;(2)证明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂线定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【题目点拨】本小题主要考查线面平行的证明,考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.18、(1)14981m(2)【解题分析】

(1)先求出飞机在150秒内飞行的距离,然后由正弦定理可得;(2)飞机,山顶的海拔的差为,则山顶的海拔高度为.【题目详解】解:(1)飞机在150秒内飞行的距离为,在中,由正弦定理,有,∴;(2)飞机,山顶的海拔的差为,,即山顶的海拔高度为.【题目点拨】本题主要考查正弦定理的应用,考查了计算能力,属于中档题.19、(1)最小正周期;单调递减区间为;(2)【解题分析】

(1)利用二倍角和辅助角公式可化简函数为;利用可求得最小正周期;令解出的范围即可得到单调递减区间;(2)由可得,根据的范围可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面积公式求得结果.【题目详解】(1)最小正周期:令得:的单调递减区间为:单调递减区间.(2)由得:,解得:由余弦定理得:(当且仅当时取等号)即面积的最大值为:【题目点拨】本题考查正弦型函数最小正周期和单调区间的求解、解三角形中三角形面积最值的求解问题;涉及到二倍角公式和辅助角公式的应用、余弦定理和三角形面积公式的应用等知识;求解正弦型函数单调区间的常用解法为整体代入的方式,通过与正弦函数图象的对应关系来进行求解.20、(1)见解析;(2),.【解题分析】

(1)可通过题意中的以及对两式进行相加和相减即可推导出数列是等比数列以及数列是等差数列;(2)可通过(1)中的结果推导出数列以及数列的通项公式,然后利用数列以及数列的通项公式即可得出结果.【题目详解】(1)由题意可知,,,,所以,即,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为的等差数列,.(2)由(1)可知,,,所以,.【题目点拨】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论