2024届湖南省明德中学高一数学第二学期期末检测模拟试题含解析_第1页
2024届湖南省明德中学高一数学第二学期期末检测模拟试题含解析_第2页
2024届湖南省明德中学高一数学第二学期期末检测模拟试题含解析_第3页
2024届湖南省明德中学高一数学第二学期期末检测模拟试题含解析_第4页
2024届湖南省明德中学高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省明德中学高一数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在ΔABC中,a,b,c分别为A,B,C的对边,如果a,b,c成等差数列,B=30°,ΔABC的面积为32,那么b=A.1+32 B.1+3 C.2.函数,,若在区间上是单调函数,,则的值为()A. B.2 C.或 D.或23.下列说法正确的是()A.命题“若,则.”的否命题是“若,则.”B.是函数在定义域上单调递增的充分不必要条件C.D.若命题,则4.已知全集,则集合A. B. C. D.5.已知点O是边长为2的正三角形ABC的中心,则()A. B. C. D.6.如图,在矩形中,,,点为的中点,点在边上,点在边上,且,则的最大值是()A. B. C. D.7.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是A.4 B.5 C.6 D.78.已知不等式的解集是,则()A. B.1 C. D.39.若直线与直线平行,则的值为()A.1 B.﹣1 C.±1 D.010.设,则下列不等式中正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为___________。12.已知正数、满足,则的最大值为__________.13.若向量,则与夹角的余弦值等于_____14.函数的定义域为___________.15.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)16.在中,若,,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求函数的单调递减区间:(2)已知,求的值域18.已知圆与直线相切(1)若直线与圆交于两点,求(2)已知,设为圆上任意一点,证明:为定值19.在中,角所对的边分别为,且.(1)求;(2)若,求的周长.20.三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.21.设数列的前项和,数列为等比数列,且.(1)求数列和的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】试题分析:由余弦定理得b2==14ac=32⇒ac=6,因为a  ,  考点:余弦定理;三角形的面积公式.2、D【解题分析】

先根据单调性得到的范围,然后根据得到的对称轴和对称中心,考虑对称轴和对称中心是否在同一周期内,分析得到的值.【题目详解】因为,则;又因为,则由可知得一条对称轴为,又因为在区间上是单调函数,则由可知的一个对称中心为;若与是同一周期内相邻的对称轴和对称中心,则,则,所以;若与不是同一周期内相邻的对称轴和对称中心,则,则,所以.【题目点拨】对称轴和对称中心的判断:对称轴:,则图象关于对称;对称中心:,则图象关于成中心对称.3、D【解题分析】“若p则q”的否命题是“若则”,所以A错。在定义上并不是单调递增函数,所以B错。不存在,C错。全称性命题的否定是特称性命题,D对,选D.4、C【解题分析】

直接利用集合补集的定义求解即可.【题目详解】因为全集,所以0,2属于全集且不属于集合A,所以集合,故选:C.【题目点拨】本题主要考查集合补集的定义,属于基础题.5、B【解题分析】

直接由正三角形的性质求出两向量的模和夹角,由数量积定义计算.【题目详解】∵点O是边长为2的正三角形ABC的中心,∴,,∴.故选:B.【题目点拨】本题考查平面向量的数量积,掌握数量积的定义是解题关键.6、A【解题分析】

把线段最值问题转化为函数问题,建立函数表达式,从而求得最值.【题目详解】设,,,,,,,,,,的最大值是.故选A.【题目点拨】本题主要考查函数的实际应用,建立合适的函数关系式是解决此题的关键,意在考查学生的分析能力及数学建模能力.7、C【解题分析】

根据相邻正方体的关系得出个正方体的棱长为等比数列,求出塔形表面积的通项公式,令,即可得出的范围.【题目详解】设从最底层开始的第层的正方体棱长为,则是以2为首项,以为公比的等比数列.∴是以4为首项,以为公比的等比数列∴塔形的表面积为.令,解得.∴塔形正方体最少为6个.故选C.【题目点拨】此题考查了立体图形的表面积问题以及等比数列求和公式的应用.解决本题的关键是得到上下正方体的棱长之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是6个面之外,上面的正方体都是露出了4个面.8、A【解题分析】

的两个解为-1和2.【题目详解】【题目点拨】函数零点、一元二次等式的解、函数与x轴的交点之间的相互转换。9、B【解题分析】

两直线平行表示斜率相同或者都垂直x轴,即。【题目详解】当时,两直线分别为:与直线,不平行,当时,直线化为:直线化为:,两直线平行,所以,,解得:,当时,两直线重合,不符,所以,【题目点拨】直线平行即表示斜率相同,且截距不同,如果截距相同则表示同一条直线。10、B【解题分析】

取,则,,只有B符合.故选B.考点:基本不等式.二、填空题:本大题共6小题,每小题5分,共30分。11、3;【解题分析】

由三视图还原几何体,根据垂直关系和勾股定理可求得各棱长,从而得到最长棱的长度.【题目详解】由三视图可得几何体如下图所示:其中平面,,,,,,四棱锥最长棱为本题正确结果:【题目点拨】本题考查由三视图还原几何体的相关问题,关键是能够准确还原几何体中的长度和垂直关系,从而确定最长棱.12、【解题分析】

直接利用均值不等式得到答案.【题目详解】,当即时等号成立.故答案为:【题目点拨】本题考查了均值不等式,意在考查学生的计算能力.13、【解题分析】

利用坐标运算求得;根据平面向量夹角公式可求得结果.【题目详解】本题正确结果:【题目点拨】本题考查向量夹角的求解,明确向量夹角的余弦值等于向量的数量积除以两向量模长的乘积.14、【解题分析】试题分析:由题设可得,解之得,故应填答案.考点:函数定义域的求法及运用.15、③④【解题分析】

①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【题目详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【题目点拨】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。16、2;【解题分析】

利用余弦定理可构造关于的方程,解方程求得结果.【题目详解】由余弦定理得:解得:或(舍)本题正确结果:【题目点拨】本题考查利用余弦定理解三角形,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)();(2)【解题分析】

(1)将三角函数化简为,再求函数的单调减区间.(2)根据得到,得到最后得到答案.【题目详解】(1),令解得:可得函数的单调递减区间为:();(2)的值域为【题目点拨】本题考查了三角函数的单调区间和值域,将三角函数化简为标准形式是解题的关键,意在考查学生的计算能力.18、(1)4;(2)详见解析.【解题分析】

(1)利用直线与圆相切,结合点到直线距离公式求出半径,从而得到圆的方程;根据直线被圆截得弦长的求解方法可求得结果;(2)设,则,利用两点间距离公式表示出,化简可得结果.【题目详解】(1)由题意知,圆心到直线的距离:圆与直线相切圆方程为:圆心到直线的距离:,(2)证明:设,则即为定值【题目点拨】本题考查直线与圆的综合应用问题,涉及到直线与圆位置关系的应用、直线被圆截得弦长的求解、两点间距离公式的应用、定值问题的求解.解决定值问题的关键是能够用变量表示出所求量,通过化简、消元整理出结果.19、(1);(2)【解题分析】

分析:(1)利用正弦定理,求得,即可求出A,根据已知条件算出,再由大边对大角,即可求出C;(2)易得,根据两角和正弦公式求出,再由正弦定理求出和,即可得到答案.详解:解:(1)由正弦定理得,又,所以,从而,因为,所以.又因为,,所以.(2)由(1)得由正弦定理得,可得,.所以的周长为.点睛:本题主要考查正弦定理在解三角形中的应用.正弦定理是解三角形的有力工具,其常见用法有以下四种:(1)已知两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)已知两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.20、⑴(2)【解题分析】

⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【题目详解】⑴由正弦定理得,由已知得,,因为,所以⑵由余弦定理,得即,解得或,负值舍去,所以【题目点拨】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论