




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市徐悲鸿中学数学高一下期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,设是正六边形的中心,则与相等的向量为()A. B. C. D.2.经过点,斜率为2的直线在y轴上的截距为()A. B. C.3 D.53.已知函数,(),若对任意的(),恒有,那么的取值集合是()A. B. C. D.4.已知三棱柱()A. B. C. D.5.茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则,的值分别为A. B.C. D.6.如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为()A. B. C. D.7.函数,的值域是()A. B. C. D.8.若集合A=α|α=π6+kπ,k∈ZA.ϕ B.π6 C.-π9.如图,正方体中,异面直线与所成角的正弦值等于A. B. C. D.110.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若当时,不等式恒成立,则实数a的取值范围是_____.12.设,,,,,为坐标原点,若、、三点共线,则的最小值是_______.13.计算:__________.14.福利彩票“双色球”中红色球由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表(下表是随机数表的第一行和第二行)选取6个红色球,选取方法是从随机数表中第1行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第3个红色球的编号为______.4954435482173793232887352056438426349164572455068877047447672176335025839212067615.在△ABC中,点M,N满足,若,则x=________,y=________.16.已知向量,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,的顶点、,边上的高线所在的直线方程为,边上的中线所在的直线方程为.(1)求点B到直线的距离;(2)求的面积.18.在中,,求角A的值。19.已知直线与.(1)当时,求直线与的交点坐标;(2)若,求a的值.20.已知圆:.(Ⅰ)求过点的圆的切线方程;(Ⅱ)设圆与轴相交于,两点,点为圆上异于,的任意一点,直线,分别与直线交于,两点.(ⅰ)当点的坐标为时,求以为直径的圆的圆心坐标及半径;(ⅱ)当点在圆上运动时,以为直径的圆被轴截得的弦长是否为定值?请说明理由.21.手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.组数第l组第2组第3组第4组第5组分组频数203630104(1)求;(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
容易看出,四边形是平行四边形,从而得出.【题目详解】根据图形看出,四边形是平行四边形故选:【题目点拨】本题考查相等向量概念辨析,属于基础题.2、B【解题分析】
写出直线的点斜式方程,再将点斜式方程化为斜截式方程即可得解.【题目详解】因为直线经过点,且斜率为2,故点斜式方程为:,化简得:,故直线在y轴上的截距为.故选:B.【题目点拨】本题考查直线的方程,解题关键是应熟知直线的五种方程形式,属于基础题,3、A【解题分析】当时,,画出图象如下图所示,由图可知,时不符合题意,故选.【题目点拨】本题主要考查含有绝对值的不等式的解法,考查选择题的解题策略中的特殊值法.主要的需要满足的是,根据不等式的解法,大于在中间,小于在两边,可化简为,左右两边为二次函数,中间可以由对数函数图象平移得到,由此画出图象验证是否符合题意.4、C【解题分析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=5、A【解题分析】
根据众数的概念可确定;根据平均数的计算方法可构造方程求得.【题目详解】甲组数据众数为甲组数据的中位数为乙组数据的平均数为:,解得:本题正确选项:【题目点拨】本题考查茎叶图中众数、中位数、平均数的求解,属于基础题.6、B【解题分析】,,.选B.点睛:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.7、A【解题分析】
由的范围求出的范围,结合余弦函数的性质即可求出函数的值域.【题目详解】∵,∴,∴当,即时,函数取最大值1,当即时,函数取最小值,即函数的值域为,故选A.【题目点拨】本题主要考查三角函数在给定区间内求函数的值域问题,通过自变量的范围求出整体的范围是解题的关键,属基础题.8、B【解题分析】
先化简集合A,B,再求A∩B.【题目详解】由题得B={x|-1≤x≤3},A=⋯所以A∩B=π故选:B【题目点拨】本题主要考查一元二次不等式的解法和集合的交集运算,意在考查学生对这些知识的理解掌握水平,属于基础题,9、D【解题分析】
由线面垂直的判定定理得:,又,所以面,由线面垂直的性质定理得:,即可求解.【题目详解】解:连接,因为四边形为正方形,所以,又,所以面,所以,所以异面直线与所成角的正弦值等于1,故选D.【题目点拨】本题考查了线面垂直的判定定理及性质定理,属中档题.10、C【解题分析】
计算结果.【题目详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【题目点拨】本题考查了棱柱的体积公式,属于简单题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【题目详解】设,是增函数,当时,,不等式化为,即,不等式在上恒成立,时,显然成立,,对上恒成立,由对勾函数性质知在是减函数,时,,∴,即.综上,.故答案为:.【题目点拨】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.12、【解题分析】
根据三点共线求得的的关系式,利用基本不等式求得所求表达式的最小值.【题目详解】依题意,由于三点共线,所以,化简得,故,当且仅当,即时,取得最小值【题目点拨】本小题主要考查三点共线的向量表示,考查利用基本不等式求最小值,属于基础题.13、【解题分析】
分子分母同除以,即可求出结果.【题目详解】因为.故答案为【题目点拨】本题主要考查“”型的极限计算,熟记常用做法即可,属于基础题型.14、05【解题分析】
根据给定的随机数表的读取规则,从第一行第6、7列开始,两个数字一组,从左向右读取,重复的或超出编号范围的跳过,即可.【题目详解】根据随机数表,排除超过33及重复的编号,第一个编号为21,第二个编号为32,第三个编号05,故选出来的第3个红色球的编号为05.【题目点拨】本题主要考查了简单随机抽样中的随机数表法,属于容易题.15、【解题分析】特殊化,不妨设,利用坐标法,以A为原点,AB为轴,为轴,建立直角坐标系,,,则,.考点:本题考点为平面向量有关知识与计算,利用向量相等解题.16、【解题分析】
直接利用向量平行性质得到答案.【题目详解】,若故答案为【题目点拨】本题考查了向量平行的性质,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)由题意求得所在直线的斜率再由直线方程点斜式求的方程,然后利用点到直线的距离公式求解;(2)设的坐标,由题意列式求得的坐标,再求出,代入三角形面积公式求解.【题目详解】(1)由题意,,直线的方程为,即.点到直线的距离;(2)设,则的中点坐标为,则,解得,即,.的面积.【题目点拨】本题考查点到直线的距离公式的应用,考查点关于直线的对称点的求法,是基础题.18、或【解题分析】
根据的值可确定,进而得到,利用两角和差公式、二倍角公式和辅助角公式化简求值可求得,根据所处范围可求得的值,进而求得角.【题目详解】且或或【题目点拨】本题考查利用三角恒等变换的公式化简求值的问题,涉及到两角和差的正弦公式、二倍角公式和辅助角公式的应用、特殊角三角函数值的求解问题;关键是能够通过三角恒等变换公式,整理化简已知式子,得到与所求角有关的角的三角函数值.19、(1);(2).【解题分析】
(1)当时,直线与联立即可.(2)两直线平行表示斜率相同且截距不同,联立方程求解即可.【题目详解】(1)当时,直线与,联立,解得,故直线与的交点坐标为.(2)因为,所以,即解得.【题目点拨】此题考察直线斜率,两直线平行表示斜率相等且截距不同(如果斜率和截距都相同则是同一条直线),属于基础简单题目.20、(Ⅰ)或;(Ⅱ)(ⅰ)圆心为,半径;(ⅱ)见解析【解题分析】
(Ⅰ)先判断在圆外,所以圆过点的切线有两条.再由斜率是否存在分别讨论.(Ⅱ)(ⅰ)设直线PA和PB把其与直线交于,两点表示出来,写出圆的方程化简即可.(ⅱ)先求出以为直径的圆被轴截得的弦长,在设出PA和PB的直线方程,分别求出与直线的交点,求出圆心,再根据勾股定理易求解.【题目详解】(Ⅰ)因为点在圆外,所以圆过点的切线有两条.当直线的斜率不存在时,直线方程为,满足条件.当直线的斜率存在时,可设为,即.由圆心到切线的距离,解得.此时切线方程为.综上,圆的切线方程为或.(Ⅱ)因为圆与轴相交于,两点,所以,.(ⅰ)当点坐标为时,直线的斜率为,直线的方程为.直线与直线的交点坐标为,同理直线的斜率为,直线的方程为.直线与直线的交点坐标为.所以以为直径的圆的圆心为,半径.(ⅱ)以为直径的圆被轴截得的弦长为定值.设点,则.直线的斜率为,直线的方程为.直线与直线的交点坐标为.同理直线的斜率为,直线的方程为.直线与直线的交点坐标为.所以圆的圆心,半径为.方法一:圆被轴截得的弦长为.所以以为直径的圆被轴截得的弦长为定值.方法二:圆的方程为.令,解得.所以.所以圆与轴的交点坐标分别为,.所以以为直径的圆被轴截得的弦长为定值.【题目点拨】此题考查解析几何中关于圆的题目,一般做法是设而不求,将需要的信息表示出来再化简求值,属于一般性题目.21、(1);(2)第1组2人,第3组3人,第4组1人;(3)【解题分析】
(1)直接计算.(2)根据分层抽样的规律按照比例抽取.(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,排列出所有可能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 景观护栏设计与安装合同
- 人力资源派遣合同终止及薪资结算协议范本
- 绿色环保型购房居间合同
- 股权转让与公司业绩提升合同范本
- 工业用气配送合同协议书
- 酒席承包合同协议书
- T/GXAS 830-2024经桡动脉穿刺介入诊疗患者术肢管理规范
- 工程双包合作合同协议书
- 美食探店合同协议书范本
- 挖机转让合同协议书图解
- 统编版(2024)七年级下册《道德与法治》课本“活动课”参考答案
- 2025年呼吸内镜考试试题及答案
- 林海雪原考试题和答案
- T-ZSA 232-2024 特种巡逻机器人通.用技术要求
- 工贸企业安全生产台账资料
- 2025年浙江名校协作体高三语文2月联考作文题目解析及范文:“向往”的“苦处”与“乐处”
- epc亮化合同范本
- 《ESD基础知识培训》课件
- 1《学会尊重》(说课稿)统编版道德与法治四年级下册
- 英语青蓝工程徒弟心得体会
- 数据资产入表的探讨与思考
评论
0/150
提交评论