版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省凤城市一中2024届高一数学第二学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知、都是公差不为0的等差数列,且,,则的值为()A.2 B.-1 C.1 D.不存在2.用数学归纳法证明这一不等式时,应注意必须为()A. B., C., D.,3.直线的倾斜角大小()A. B. C. D.4.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.5.如图所示是正方体的平面展开图,在这个正方体中CN与BM所成角为()A.30° B.45° C.60° D.90°6.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则7.已知点和点,且,则实数的值是()A.5或-1 B.5或1 C.2或-6 D.-2或68.如图是一名篮球运动员在最近6场比赛中所得分数的茎叶图,则下列关于该运动员所得分数的说法错误的是()A.中位数为14 B.众数为13 C.平均数为15 D.方差为199.已知,则()A. B. C. D.10.已知命题,则命题的否定为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.给出下列五个命题:①函数的一条对称轴是;②函数的图象关于点(,0)对称;③正弦函数在第一象限为增函数;④若,则,其中;⑤函数的图像与直线有且仅有两个不同的交点,则的取值范围为.以上五个命题中正确的有(填写所有正确命题的序号)12.在中,内角,,的对边分别为,,.若,,成等比数列,且,则________.13.向量满足,,则向量的夹角的余弦值为_____.14.过抛物线的焦点F的直线交抛物线于A、B两点,则________.15.三棱锥P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,侧面PAB是等边三角形且与底面ABC垂直,则该三棱锥的外接球表面积为_____.16.若,点的坐标为,则点的坐标为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2019年4月20日,福建省人民政府公布了“3+1+2”新高考方案,方案中“2”指的是在思想政治、地理、化学、生物4门中选择2门.“2”中记入高考总分的单科成绩是由原始分转化得到的等级分,学科高考原始分在全省的排名越靠前,等级分越高小明同学是2018级的高一学生.已确定了必选地理且不选政治,为确定另选一科,小明收集并整理了化学与生物近10大联考的成绩百分比排名数据x(如x=19的含义是指在该次考试中,成绩高于小明的考生占参加该次考试的考生数的19%)绘制茎叶图如下.(1)分别计算化学、生物两个学科10次联考的百分比排名的平均数;中位数;(2)根据已学的统计知识,并结合上面的数据,帮助小明作出选择.并说明理由.18.设常数,函数.(1)若为偶函数,求的值;(2)若,求方程在区间上的解.19.如图,在△ABC中,A(5,–2),B(7,4),且AC边的中点M在y轴上,BC的中点N在x轴上.(1)求点C的坐标;(2)求△ABC的面积.20.如图,三条直线型公路,,在点处交汇,其中与、与的夹角都为,在公路上取一点,且km,过铺设一直线型的管道,其中点在上,点在上(,足够长),设km,km.(1)求出,的关系式;(2)试确定,的位置,使得公路段与段的长度之和最小.21.已知圆(为坐标原点),直线.(1)过直线上任意一点作圆的两条切线,切点分别为,求四边形面积的最小值.(2)过点的直线分别与圆交于点(不与重合),若,试问直线是否过定点?并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
首先根据求出数列、公差之间的关系,再代入即可。【题目详解】因为和都是公差不为零的等差数列,所以设故,可得又因为和代入则.故选:C.【题目点拨】本题主要考查了极限的问题以及等差数列的通项属于基础题。2、D【解题分析】
根据题意验证,,时,不等式不成立,当时,不等式成立,即可得出答案.【题目详解】解:当,,时,显然不等式不成立,当时,不等式成立,故用数学归纳法证明这一不等式时,应注意必须为,故选:.【题目点拨】本题考查数学归纳法的应用,属于基础题.3、B【解题分析】
化简得到,根据计算得到答案.【题目详解】直线,即,,,故.故选:.【题目点拨】本题考查了直线的倾斜角,意在考查学生的计算能力.4、B【解题分析】
利用三角函数图像平移原则,结合诱导公式,即可求解.【题目详解】函数的图象向右平移个单位长度得到.故选B.【题目点拨】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.5、C【解题分析】
把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故∠EBM(或其补角)为所求.再由△BEM是等边三角形,可得∠EBM=60°,从而得出结论.【题目详解】把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故异面直线CN与BM所成的角就是BE和BM所成的角,故∠EBM(或其补角)为所求,再由BEM是等边三角形,可得∠EBM=60,故选:C【题目点拨】本题主要考查了求异面直线所成的角,体现了转化的数学思想,属于中档题.6、D【解题分析】
根据各选项的条件及结论,可画出图形或想象图形,再结合平行、垂直的判定定理即可找出正确选项.【题目详解】选项A错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面;选项B错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C错误,一个平面内垂直于两平面交线的直线,不一定和另一平面垂直,可能斜交;选项D正确,由,便得,又,,即.故选:D.【题目点拨】本题考查空间直线位置关系的判定,这种位置关系的判断题,可以举反例或者用定理简单证明,属于基础题.7、A【解题分析】
根据空间中两点间距离公式建立方程求得结果.【题目详解】解得:或本题正确选项:【题目点拨】本题考查空间中两点间距离公式的应用,属于基础题.8、D【解题分析】从题设中所提供的茎叶图可知六个数分别是,所以其中位数是,众数是,平均数,方差是,应选答案D.9、A【解题分析】分析:利用余弦的二倍角公式可得,进而利用同角三角基本关系,使其除以,转化成正切,然后把的值代入即可.详解:由题意得.∵∴故选A.点睛:本题主要考查了同角三角函数的基本关系和二倍角的余弦函数的公式.解题的关键是利用同角三角函数中的平方关系,完成了弦切的互化.10、C【解题分析】
根据全称命题的否定是特称命题,可直接得出结果.【题目详解】命题“”的否定是“”.故选C【题目点拨】本题主要考查全称命题的否定,只需改量词和结论即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、①②⑤【解题分析】试题分析:①将代入可得函数最大值,为函数对称轴;②函数的图象关于点对称,包括点;③,③错误;④利用诱导公式,可得不同于的表达式;⑤对进行讨论,利用正弦函数图象,得出函数与直线仅有有两个不同的交点,则.故本题答案应填①②⑤.考点:三角函数的性质.【知识点睛】本题主要考查三角函数的图象性质.对于和的最小正周期为.若为偶函数,则当时函数取得最值,若为奇函数,则当时,.若要求的对称轴,只要令,求.若要求的对称中心的横坐标,只要令即可.12、【解题分析】
A,B,C是三角形内角,那么,代入等式中,进行化简可得角A,C的关系,再由,,成等比数列,根据正弦定理,将边的关系转化为角的关系,两式相减可得关于的方程,解方程即得.【题目详解】因为,所以,所以.因为,,成等比数列,所以,所以,则,整理得,解得.【题目点拨】本题考查正弦定理和等比数列运用,有一定的综合性.13、【解题分析】
通过向量的垂直关系,结合向量的数量积求解向量的夹角的余弦值.【题目详解】向量,满足,,可得:,,向量的夹角为,所以.故答案为.【题目点拨】本题考查向量的数量积的应用,向量的夹角的余弦函数值的求法.考查计算能力.属于基础题.14、【解题分析】
讨论斜率不存在和斜率存在两种情况,分别计算得到答案.【题目详解】抛物线的焦点F为,当斜率不存在时,易知,故;当斜率存在时,设,故,即,故,.综上所述:.故答案为:.【题目点拨】本题考查了抛物线中线段长度问题,意在考查学生的计算能力和转化能力.15、【解题分析】
求出的外接圆半径,的外接圆半径,求出外接球的半径,即可求出该三棱锥的外接球的表面积.【题目详解】由题意,设的外心为,的外心为,则的外接圆半径,在中,因为,由余弦定理可得,所以,所以的外接圆半径,在等边中,由,所以,所以,设球心为,球的半径为,则,又由面,面,则,所以该三棱锥的外接球的表面积为.故答案为:.【题目点拨】本题主要考查了三棱锥的外接球的表面积的求解,其中解答中熟练应用空间几何体的结构特征,确定球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.16、【解题分析】试题分析:设,则有,所以,解得,所以.考点:平面向量的坐标运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)化学平均数30.2;中位数26;生物平均数29.6;中位数31;(2)见解析【解题分析】
(1)直接利用平均数的公式和中位数的定义计算化学、生物两个学科10次联考的百分比排名的平均数和中位数;(2)从平均数或中位数的角度出发帮助小明选择.【题目详解】解:(1)化学学科全市百分比排名的平均数,化学学科联考百分比排名的中位数为.生物学科联考百分比排名的平均数,生物学科联考百分比排名的中位数为.(2)从平均数来看,小明的生物学科比化学学科百分比排名靠前,应选生物.或者:从中位数来看,小明的化学学科比生物学科百分比排名靠前,应选化学.【题目点拨】本题主要考查平均数的计算和中位数的计算,考查平均数和中位数的意义,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1);(2)或或.【解题分析】
(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【题目详解】(1)∵,∴,∵为偶函数,∴,∴,∴,∴;(2)∵,∴,∴,∴,∵,∴,∴,∴,或,∴,或,∵,∴或或【题目点拨】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19、(1)(–5,–4)(2)【解题分析】
(1)设点,根据题意写出关于的方程组,得到点坐标;(2)由两点间距离公式求出,再由两点得到直线的方程,利用点到直线的距离公式,求出点到的距离,由三角形面积公式得到答案.【题目详解】(1)由题意,设点,根据AC边的中点M在y轴上,BC的中点N在x轴上,根据中点公式,可得,解得,所以点的坐标是.(2)因为,得.,所以直线的方程为,即,故点到直线的距离,所以的面积.【题目点拨】本题考查中点坐标公式,两点间距离公式,点到直线的距离公式,属于简单题.20、(1)(2)当时,公路段与段的总长度最小【解题分析】
(1)(法一)观察图形可得,由此根据三角形的面积公式,建立方程,化简即可得到的关系式;(法二)以点为坐标原点,所在的直线为轴建立平面直角坐标系,找到各点坐标,根据三点共线,即可得到结论;(2)运用“乘1法”,利用基本不等式,即可求得最值,得到答案.【题目详解】(1)(法一)由图形可知.,,所以,即.(法二)以为坐标原点,所在的直线为轴建立平面直角坐标系,则,,,,由,,三点共线得.(2)由(1)可知,则(),当且仅当(km)时取等号.答:当时,公路段与段的总长度最小为8..【题目点拨】本题主要考查了三角形的面积公式应用,以及利用基本不等式求最值,着重考查了推理运算能力,属于基础题.21、(1)12;(2)过定点,理由见解析【解题分析】
(1)由,得过点的切线长,所以四边形的面积为,即可得到本题答案;(2)设直线的方程为,则直线的方程为.联立方程,消去,整理得,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保处理班组施工合同
- 2025有关汽车租赁合同参考范本
- 公交车辆厂管道安装施工合同
- 智能出行用电合同执行细则
- 咨询公司聘用合同注意事项
- 机场建设劳务施工合同
- 智能制造通讯协议
- 2025方案征集的合同范本
- 消防合同范本设计
- 儿童游泳池租赁合同
- 华为管理学习心得体会
- 2025年首都机场地服公司招聘笔试参考题库含答案解析
- 2021年发电厂(含新能源场站)涉网电力监控系统网络安全检查表
- 审计服务采购招标文件
- 空置房检查培训
- 离婚不离门共同生活协议书
- 2023年新疆广播电视台招聘事业单位工作人员笔试真题
- 国优电力工程现场复查要点
- 商业球房运营方案
- 工业大数据采集处理与应用
- 卷烟厂车间辅助业务外包项目服务方案(技术方案)
评论
0/150
提交评论