




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省烟台市莱州市一中数学高一第二学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件2.已知,,从射出的光线经过直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程可以用对称性转化为一条线段,这条线段的长为()A. B.3 C. D.3.执行如图所示的程序框图,若输入,则输出的数等于()A. B. C. D.4.在正方体中,分别是线段的中点,则下列判断错误的是()A.与垂直 B.与垂直C.与平行 D.与平行5.已知扇形的半径为,面积为,则这个扇形圆心角的弧度数为()A. B. C.2 D.46.在棱长为2的正方体中,是内(不含边界)的一个动点,若,则线段的长的取值范围为()A. B. C. D.7.在中,角A,B,C所对的边分别为a,b,c,若,,,则满足条件的的个数为()A.0 B.1 C.2 D.无数多个8.数列,,,,,,的一个通项公式为()A. B.C. D.9.已知函数,其图像相邻的两个对称中心之间的距离为,且有一条对称轴为直线,则下列判断正确的是()A.函数的最小正周期为B.函数的图象关于直线对称C.函数在区间上单调递增D.函数的图像关于点对称10.从1,2,3,…,9这个9个数中任取5个不同的数,则这5个数的中位数是5的概率等于()A.57 B.59 C.2二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是________12.函数的定义域为________13.已知正实数满足,则的最小值为__________.14.已知向量a=1,2,b=2,-2,c=15.在等差数列中,,,则公差______.16.设,,,若,则实数的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)从2,3,8,9中任取两个不同的数字,分别记为,求为整数的概率?(2)两人相约在7点到8点在某地会面,先到者等候另一个人20分钟方可离去.试求这两人能会面的概率?18.2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;(2)设该城市郊区和城区的居民户数比为,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.19.一扇形的周长为20,当扇形的圆心角等于多少时,这个扇形的面积最大?最大面积是多少?20.如图,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中点,求证:(1)平面ABC;(2)平面EDB.(3)求几何体的体积.21.某制造商月生产了一批乒乓球,随机抽样个进行检查,测得每个球的直径(单位:mm),将数据分组如下表分组频数频率10205020合计100(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】试题分析:把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不可能同时发生,是互斥事件,但除了事件“甲分得红牌”与“乙分得红牌”还有“丙分得红牌”,所以这两者不是对立事件,答案为B.考点:互斥与对立事件.2、A【解题分析】
根据题意,画出示意图,求出点的坐标,进而利用两点之间距离公式求解.【题目详解】根据题意,作图如下:已知直线AB的方程为:,则:点P关于直线AB的对称点为,则:,解得点,同理可得点P关于直线OB的对称点为:故光线的路程为.故选:A.【题目点拨】本题考查点关于直线的对称点的求解、斜率的求解、以及两点之间的距离,属基础题.3、B【解题分析】
模拟执行循环体的过程,即可得到结果.【题目详解】根据程序框图,模拟执行如下:,满足,,满足,,满足,,不满足,输出.故选:B.【题目点拨】本题考查程序框图中循环体的执行,属基础题.4、D【解题分析】
利用数形结合,逐一判断,可得结果.【题目详解】如图由分别是线段的中点所以//A选项正确,因为,所以B选项正确,由,所以C选项正确D选项错误,由//,而与相交,所以可知,异面故选:D【题目点拨】本题主要考查空间中直线与直线的位置关系,属基础题.5、D【解题分析】
利用扇形面积,结合题中数据,建立关于圆心角的弧度数的方程,即可解得.【题目详解】解:设扇形圆心角的弧度数为,因为扇形所在圆的半径为,且该扇形的面积为,则扇形的面积为,解得:.故选:D.【题目点拨】本题在已知扇形面积和半径的情况下,求扇形圆心角的弧度数,着重考查了弧度制的定义和扇形面积公式等知识,属于基础题.6、C【解题分析】
先判断是正四面体,可得正四面体的棱长为,则的最大值为的长,的最小值是到平面的距离,结合不在三角形的边上,计算可得结果.【题目详解】由正方体的性质可知,是正四面体,且正四面体的棱长为,在内,的最大值为,的最小值是到平面的距离,设在平面的射影为,则为正三角形的中心,,,的最小值为,又因为不在三角形的边上,所以的范围是,故选C.【题目点拨】本题主要考查正方体的性质及立体几何求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义以及平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.7、B【解题分析】
直接由正弦定理分析判断得解.【题目详解】由正弦定理得,所以C只有一解,所以三角形只有一解.故选:B【题目点拨】本题主要考查正弦定理的应用,意在考查学生对这些知识的理解掌握水平.8、C【解题分析】
首先注意到数列的奇数项为负,偶数项为正,其次数列各项绝对值构成一个以1为首项,以2为公差的等差数列,从而易求出其通项公式.【题目详解】∵数列{an}各项值为,,,,,,∴各项绝对值构成一个以1为首项,以2为公差的等差数列,∴|an|=2n﹣1又∵数列的奇数项为负,偶数项为正,∴an=(﹣1)n(2n﹣1).故选:C.【题目点拨】本题给出数列的前几项,猜想数列的通项,挖掘其规律是关键.解题时应注意数列的奇数项为负,偶数项为正,否则会错.9、C【解题分析】
本题首先可根据相邻的两个对称中心之间的距离为来确定的值,然后根据直线是对称轴以及即可确定的值,解出函数的解析式之后,通过三角函数的性质求出最小正周期、对称轴、单调递增区间以及对称中心,即可得出结果.【题目详解】图像相邻的两个对称中心之间的距离为,即函数的周期为,由得,所以,又是一条对称轴,所以,,得,又,得,所以.最小正周期,项错误;令,,得对称轴方程为,,选项错误;由,,得单调递增区间为,,项中的区间对应,故正确;由,,得对称中心的坐标为,,选项错误,综上所述,故选C.【题目点拨】本题考查根据三角函数图像性质来求三角函数解析式以及根据三角函数解析式得出三角函数的相关性质,考查对函数的相关性质的理解,考查推理能力,是中档题.10、C【解题分析】试题分析:设事件为“从1,2,3,…,9这9个数中5个数的中位数是5”,则基本事件总数为种,事件所包含的基本事件的总数为:,所以由古典概型的计算公式知,,故应选.考点:1.古典概型;二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据的值域为求解即可.【题目详解】由题.故定义域为.故答案为:【题目点拨】本题主要考查了反三角函数的定义域,属于基础题型.12、【解题分析】
根据反余弦函数的定义,可得函数满足,即可求解.【题目详解】由题意,根据反余弦函数的定义,可得函数满足,解得,即函数的定义域为.故答案为:【题目点拨】本题主要考查了反余弦函数的定义的应用,其中解答中熟记反余弦函数的定义,列出不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.13、6【解题分析】
由题得,解不等式即得x+y的最小值.【题目详解】由题得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值为6.当且仅当x=y=3时取等.故答案为:6【题目点拨】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.14、1【解题分析】
由两向量共线的坐标关系计算即可.【题目详解】由题可得2∵c//∴4λ-2=0故答案为1【题目点拨】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.15、3【解题分析】
根据等差数列公差性质列式得结果.【题目详解】因为,,所以.【题目点拨】本题考查等差数列公差,考查基本分析求解能力,属基础题.16、【解题分析】
根据题意,可以求出,根据可得出,进行数量积的坐标运算即可求出的值.【题目详解】故答案为:【题目点拨】本题考查向量垂直的坐标表示,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)分别求出基本事件总数及为整数的事件数,再由古典概型概率公式求解;(2)建立坐标系,找出会面的区域,用会面的区域面积比总区域面积得答案.【题目详解】(1)所有的基本事件共有4×3=12个,记事件A={为整数},因为,则事件A包含的基本事件共有2个,∴p(A)=;(2)以x、y分别表示两人到达时刻,则.两人能会面的充要条件是.建立直角坐标系如下图:∴P=.∴这两人能会面的概率为.【题目点拨】本题考查古典概型与几何概型概率的求法,考查数学转化思想方法,是基础题.18、(1)(2)符合【解题分析】
:(1)先列举出从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件,再列举其中年人均用水量都不超过30吨的基本事件,最后计算即可.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意计算该城市年人均用水量不超过30吨的居民用户的百分率.【题目详解】解:(1)从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(32,34)共10个.其中年人均用水量都不超过30吨的基本事件是:(19,25),(19,28),(25,28)共3个.设“从5户郊区居民用户中随机抽取2户,其年人均用水量都不超过30吨”的事件为,则所求的概率为.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意,该城市年人均用水量不超过30吨的居民用户的百分率为:.故此方案符合国家“保基本”政策.【题目点拨】本题考查了古典概型在实际生活中的应用,要紧扣题意从题目中抽象出数学计算的模型.19、;;【解题分析】
设扇形的半径为,弧长为,利用周长关系,表示出扇形的面积,利用二次函数求出面积的最大值,以及圆心角的大小.【题目详解】设扇形的半径为,弧长为,则,即,扇形的面积,将上式代入得,所以当且仅当时,有最大值,此时,可得,所以当时,扇形的面积取最大值,最大值为【题目点拨】本题考查了扇形的弧长公式、面积公式以及二次函数的性质,需熟记扇形的弧长、面积公式,属于基础题.20、(1)见解析(2)见解析(3)【解题分析】
(1)如图:证明得到答案.(2)证明得到答案.(3)几何体转化为,利用体积公式得到答案.【题目详解】(1)∵F分别是BE的中点,取BA的中点M,∴FM∥EA,FMEA=1∵EA、CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM,又CD=FM∴四边形FMCD是平行四边形,∴FD∥MC,FD⊄平面ABC,MC⊂平面ABC∴FD∥平面ABC.(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又EA垂直于平面ABC∴CM⊥AE,又AE∩AB=A,所以CM⊥面EAB,∵AF⊂面EAB∴CM⊥AF,又CM∥FD,从而FD⊥AF,因F是BE的中点,EA=AB所以AF⊥EB.EB,FD是平面EDB内两条相交直线,所以AF⊥平面EDB.(3)几何体的体积等于为中点,连接平面【题目点拨】本题考查了线面平行,线面垂直,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB31/T 1037-2017林业有害生物测报点设置技术规范
- DB31/T 1028.1-2016市场监督管理所通用管理规范第1部分:基本要求
- DB31/ 753-2013危险场所电气防爆安全检测作业规范
- CQJTG/T E03-2021公路桥梁预应力施工质量验收规范
- 金属制品在环保监测设备中的实时监测能力考核试卷
- 校长在2025届高考百日誓师大会上的讲话横绝学海问鼎苍穹
- 2025年中国边缘智能计算芯片行业市场现状及未来发展前景预测分析报告
- 房产拍卖代理与中介服务合同
- 抖音平台合规性承诺及信息互发合同
- 2025年中国被动电子元器件行业市场规模调研及投资前景研究分析报告
- 家庭车辆挂别人名下协议书范文
- 电厂运行维护管理制度
- 斜屋面瓦片施工协议
- 人工智能导论学习通超星期末考试答案章节答案2024年
- 人工智能通识教程 第2版 课件全套 周苏 第1-15章 思考的工具- 人工智能发展
- 2024年河南住院医师-河南住院医师口腔科考试近5年真题集锦(频考类试题)带答案
- 2024小红书影像赛道赚钱趋势详解
- 《液压传动与气动技术》课后习题答案(大学期末复习资料)
- 2024年生态环境执法大练兵比武竞赛理论考试题库-上(单选题)
- 大学生网络安全教育筑牢安全网络防线课件
- DB11-T854-2023占道作业交通安全设施设置技术要求
评论
0/150
提交评论