2024届广东深圳华师附中高一数学第二学期期末检测试题含解析_第1页
2024届广东深圳华师附中高一数学第二学期期末检测试题含解析_第2页
2024届广东深圳华师附中高一数学第二学期期末检测试题含解析_第3页
2024届广东深圳华师附中高一数学第二学期期末检测试题含解析_第4页
2024届广东深圳华师附中高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东深圳华师附中高一数学第二学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是锐角,那么2是()A.第一象限 B.第二象限C.小于的正角 D.第一象限或第二象限2.若不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.3.已知函数,则()A.的最小正周期为,最大值为1 B.的最小正周期为,最大值为C.的最小正周期为,最大值为1 D.的最小正周期为,最大值为4.椭圆以轴和轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A. B.C.或 D.或5.函数的图象沿轴向左平移个单位长度后得到函数的图象的一个对称中心是()A. B. C. D.6.内角,,的对边分别为,,.已知,,,则这样的三角形有()A.0个 B.1个 C.2个 D.1个或2个7.在中,角所对的边分别为,若.且,则的值为()A. B.C. D.或8.已知向量,,若,则实数a的值为A. B.2或 C.或1 D.9.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a410.已知,,,则的最小值是()A. B.4 C.9 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系xOy中,已知直角中,直角顶点A在直线上,顶点B,C在圆上,则点A横坐标的取值范围是__________.12.若,且,则=_______.13.已知实数满足则的最小值为__________.14.已知等比数列的公比为2,前n项和为,则=______.15.为了研究问题方便,有时将余弦定理写成:,利用这个结构解决如下问题:若三个正实数,满足,,,则_______.16.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列,满足:,,,,.(1)写出数列的前三项;(2)证明:数列为常数列,并用表示;(3)证明:数列是等比数列,并求数列的通项公式.18.已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在区间上的最值以及相应的x的取值.19.已知数列的前项和为,满足,数列满足.(1)求数列、的通项公式;(2),求数列的前项和;(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.20.在中,角所对的边分别为.(1)若,求角的大小;(2)若是边上的中线,求证:.21.写出集合的所有子集.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】是锐角,∴,∴是小于的正角2、B【解题分析】∵不等式对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,∴,∴,∴实数的取值范围是,故选B.3、D【解题分析】

结合二倍角公式,对化简,可求得函数的最小正周期和最大值.【题目详解】由题意,,所以,当时,取得最大值为.由函数的最小正周期为,故的最小正周期为.故选:D.【题目点拨】本题考查三角函数周期性与最值,考查学生的计算求解能力,属于基础题.4、C【解题分析】

由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),分类讨论,即可求解.【题目详解】由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),则若焦点在x轴上,则,,椭圆方程为;若焦点在y轴上,则,,椭圆方程为,故选C.【题目点拨】本题主要考查了椭圆的方程的求解,其中解答中熟记椭圆的标准方程的形式,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解题分析】

先求出变换后的函数的解析式,求出所得函数的对称中心坐标,可得出正确选项.【题目详解】函数的图象沿轴向左平移个单位长度后得到函数的解析式为,令,得,因此,所得函数的图象的一个对称中心是,故选B.【题目点拨】本题考查图象的变换以及三角函数的对称中心,解题的关键就是求出变换后的三角函数解析式,考查分析问题和解决问题的能力,属于中等题.6、C【解题分析】

根据和的大小关系,判断出解的个数.【题目详解】由于,所以,故解的个数有两个.如图所示两个解.故选:C【题目点拨】本小题主要考查正弦定理的运用过程中,三角形解的个数判断,属于基础题.7、D【解题分析】

首先根据余弦定理,得到或.再分别计算即可.【题目详解】因为,所以,即:,解得:或.当时,.当时,.所以或.故选:D【题目点拨】本题主要考查余弦定理解三角形,熟记公式为解题的关键,属于中档题.8、C【解题分析】

根据题意,由向量平行的坐标表示公式可得,解可得a的值,即可得答案.【题目详解】根据题意,向量,,若,则有,解可得或1;故选C.【题目点拨】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a的方程是关键,是基础题9、C【解题分析】

在验证时,左端计算所得的项,把代入等式左边即可得到答案.【题目详解】解:用数学归纳法证明,

在验证时,把当代入,左端.

故选:C.【题目点拨】此题主要考查数学归纳法证明等式的问题,属于概念性问题.10、C【解题分析】

利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的最小值.【题目详解】∵,,,∴=,当且仅当,即时等号成立.故选:C.【题目点拨】本题主要考查了基本不等式求最值,注意一定,二正,三相等的原则,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由题意画出图形,写出以原点为圆心,以为半径的圆的方程,与直线方程联立求得值,则答案可求.【题目详解】如图所示,当点往直线两边运动时,不断变小,当点为直线上的定点时,直线与圆相切时,最大,∴当为正方形,则,则以为圆心,以为半径的圆的方程为.联立,得.解得或.点横坐标的取值范围是.故答案为:.【题目点拨】本题考查直线与圆位置关系的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的应用.12、【解题分析】

由的值及,可得的值,计算可得的值.【题目详解】解:由,且,由,可得,故,故答案为:.【题目点拨】本题主要考查了同角三角函数的基本关系,熟练掌握其基本关系是解题的关键.13、【解题分析】

本题首先可以根据题意绘出不等式组表示的平面区域,然后结合目标函数的几何性质,找出目标函数取最小值所过的点,即可得出结果。【题目详解】绘制不等式组表示的平面区域如图阴影部分所示,结合目标函数的几何意义可知,目标函数在点处取得最小值,即。【题目点拨】本题考查根据不等式组表示的平面区域来求目标函数的最值,能否绘出不等式组表示的平面区域是解决本题的关键,考查数形结合思想,是简单题。14、【解题分析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.15、【解题分析】

设的角、、的对边分别为、、,在内取点,使得,设,,,利用余弦定理得出的三边长,由此计算出的面积,再利用可得出的值.【题目详解】设的角、、的对边分别为、、,在内取点,使得,设,,,由余弦定理得,,同理可得,,,则,的面积为,另一方面,解得,故答案为.【题目点拨】本题考查余弦定理的应用,问题的关键在于将题中的等式转化为余弦定理,并转化为三角形的面积来进行计算,考查化归与转化思想以及数形结合思想,属于中等题.16、【解题分析】

设球的半径为r,则,,,所以,故答案为.考点:圆柱,圆锥,球的体积公式.点评:圆柱,圆锥,球的体积公式分别为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,(2)证明见解析,(3)证明见解析,【解题分析】

(1)利用递推关系式直接求解即可.(2)由整理化简得,从而可证出结论.(3)首先由递推关系式证出,再由对数的运算性质以及等比数列的定义即可证出.利用【题目详解】(1),,;(2)证明:,∴为常数列4,即,∴;(3),∴是以为首项,2为公比的等比数列,∴.【题目点拨】本题考查了由数列的递推关系式研究数列的性质、等比数列的定义,属于中档题.18、(Ⅰ);(Ⅱ)时,取得最大值2;时,取得最小值.【解题分析】

(Ⅰ)利用二倍角和两角和与差以及辅助角公式将函数化为y=Asin(ωx+φ)的形式,利用三角函数的周期公式求函数的最小正周期.(Ⅱ)利用x∈[,]上时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值.【题目详解】(Ⅰ)因为函数f(x)=4cosxsin(x)1.化简可得:f(x)=4cosxsinxcos4cos2xsin1sin2x+2cos2x1sin2x+cos2x=2sin(2x)所以的最小正周期为.(Ⅱ)因为,所以.当,即时,f(x)取得最大值2;当,即时,f(x)取得最小值-1.【题目点拨】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键,属于基础题.19、(1),;(2)见解析;(3)存在,.【解题分析】

(1)利用可得,从而可得为等比数列,故可得其通项公式.用累加法可求的通项.(2)利用分组求和法可求,注意就的奇偶性分类讨论.(3)根据的通项可得,故考虑的解可得满足条件的的值.【题目详解】(1)在数列中,当时,.当时,由得,因为,故,所以数列是以为首项,为公比的等比数列即.在数列中,当时,有,由累加法得,,.当时,也符合上式,所以.(2).当为偶数时,=;当为奇数时,=.(3)对任意的正整数,有,假设存在正整数,使得,则,令,解得,又为正整数,所以满足题意.【题目点拨】给定数列的递推关系,求数列的通项时,我们常需要对递推关系做变形构建新数列(新数列的通项容易求得),常见的递推关系、变形方法及求法如下:(1),用累加法;(2),可变形为,利用等比数列的通项公式可求的通项公式,两种方法都可以得到的通项公式.(3)递推关系式中有与前项和,可利用实现与之间的相互转化.另外,数列不等式恒成立与有解问题,可转化为数列的最值(或项的范围)来处理.20、(1);(2)见解析【解题分析】

(1)已知三边的关系且有平方,考虑化简式子构成余弦定理即可。(2)观察结论形似余弦定理,通过,则互

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论