版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省保山市第一中学数学高一下期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则比多了几项()A.1 B. C. D.2.在中,,,成等差数列,,则的形状为()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等边三角形3.设等比数列的前项和为,且,则()A. B. C. D.4.已知向量,,若,则()A. B. C. D.5.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A.2 B.3 C.4 D.16.已知等差数列中,若,则()A.1 B.2 C.3 D.47.一个学校高一、高二、高三的学生人数之比为2:3:5,若用分层抽样的方法抽取容量为200的样本,则应从高三学生中抽取的人数为:A.100 B.80 C.60 D.408.已知Sn是等差数列{an}的前n项和,a2+a4+a6=12,则S7=()A.20 B.28 C.36 D.49.已知角α的终边上有一点P(sin,cos),则tanα=()A. B. C. D.10.若函数在处取最小值,则等于()A.3 B. C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.设是公差不为0的等差数列,且成等比数列,则的前10项和________.12.定义在上的函数,对任意的正整数,都有,且,若对任意的正整数,有,则___________.13.向边长为的正方形内随机投粒豆子,其中粒豆子落在到正方形的顶点的距离不大于的区域内(图中阴影区域),由此可估计的近似值为______.(保留四位有效数字)14.若函数有两个不同的零点,则实数的取值范围是______.15.在中,,点在边上,若,的面积为,则___________16.函数,的值域是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知是半径为1,圆心角为的扇形,是扇形狐上的动点,点分别在半径上,且是平行四边形,记,四边形的面积为,问当取何值时,最大?的最大值是多少?18.已知函数.(1)求的最小正周期和上的单调增区间:(2)若对任意的和恒成立,求实数的取值范围.19.已知函数的定义域为R(1)求的取值范围;(2)若函数的最小值为,解关于的不等式。20.已知,.(1)求;(2)求.21.数列中,,(为常数).(1)若,,成等差数列,求的值;(2)是否存在,使得为等比数列?并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
由写出,比较两个等式得多了几项.【题目详解】由题意,则,那么:,又比多了项.故选:D.【题目点拨】本题考查对函数的理解和带值计算问题,属于基础题.2、B【解题分析】
根据等差中项以及余弦定理即可.【题目详解】因为,,成等差数列,得为直角三角形为等腰直角三角形,所以选择B【题目点拨】本题主要考查了等差中项和余弦定理,若为等差数列,则,属于基础题.3、C【解题分析】
由,,联立方程组,求出等比数列的首项和公比,然后求.【题目详解】解:若,则,显然不成立,所以.由,,得,,所以,所以公比.所以.或者利用,所以.故选:C.【题目点拨】本题主要考查等比数列的前项和公式的应用,要求熟练掌握,特别要注意对公比是否等于1要进行讨论,属于基础题.4、B【解题分析】
∵,∴.∴,即,∴,,故选B.【考点定位】向量的坐标运算5、B【解题分析】
将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【题目详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【题目点拨】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.6、A【解题分析】
根据已知先求出数列的首项,公差d已知,可得。【题目详解】由题得,,解得,则.故选:A【题目点拨】本题考查用数列的通项公式求某一项,是基础题。7、A【解题分析】
根据分层抽样的方法,得到高三学生抽取的人数为,即可求解,得到答案.【题目详解】由题意,学校高一、高二、高三的学生人数之比为2:3:5,采用分层抽样的方法抽取容量为200的样本,所以高三学生抽取的人数为人,故选A.【题目点拨】本题主要考查了分层抽样的应用,其中解答中熟记分层抽样的方法是解答的关键,着重考查了推理与运算能力,属于基础题.8、B【解题分析】
由等差数列的性质计算.【题目详解】由题意,,∴.故选B.【题目点拨】本题考查等差数列的性质,灵活运用等差数列的性质可以很快速地求解等差数列的问题.在等差数列中,正整数满足,则,特别地若,则;.9、A【解题分析】
由题意利用任意角的三角函数的定义,求得tanα的值.【题目详解】解:∵角α的终边上有一点P(sin,cos),∴x=sin,y=cos,∴则tanα,故选A.【题目点拨】本题主要考查任意角的三角函数的定义,属于基础题.10、A【解题分析】
将函数的解析式配凑为,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的值,可得出的值.【题目详解】当时,,则,当且仅当时,即当时,等号成立,因此,,故选A.【题目点拨】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用等差数列的通项公式和等比数列的性质求出公差,由此能求出【题目详解】因为是公差不为0的等差数列,且成等比数列所以,即解得或(舍)所以故答案为:【题目点拨】本题考查等差数列前10项和的求法,解题时要认真审题,注意等比数列的性质合理运用.12、【解题分析】
根据条件求出的表达式,利用等比数列的定义即可证明为等比数列,即可求出通项公式.【题目详解】令,得,则,,令,得,则,,令,得,即,则,即所以,数列是等比数列,公比,首项.所以,故答案为:【题目点拨】本题主要考查等比数列的判断和证明,综合性较强,考查学生的计算能力,属于难题.13、3.1【解题分析】
根据已知条件求出满足条件的正方形的面积,及到顶点的距离不大于1的区域(图中阴影区域)的面积比值等于频率即可求出答案.【题目详解】依题意得,正方形的面积,阴影部分的面积,故落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的概率,随机投10000粒豆子,其中1968粒豆子落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的频率为:,即有:,解得:,故答案为3.1.【题目点拨】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件的基本事件对应的“几何度量”(A),再求出总的基本事件对应的“几何度量”,最后根据求解.利用频率约等于概率,即可求解。14、【解题分析】
令,可得,从而将问题转化为和的图象有两个不同交点,作出图形,可求出答案.【题目详解】由题意,令,则,则和的图象有两个不同交点,作出的图象,如下图,是过点的直线,当直线斜率时,和的图象有两个交点.故答案为:.【题目点拨】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题.15、【解题分析】
由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【题目详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【题目点拨】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.16、【解题分析】
首先根据的范围求出的范围,从而求出值域。【题目详解】当时,,由于反余弦函数是定义域上的减函数,且所以值域为故答案为:.【题目点拨】本题主要考查了复合函数值域的求法:首先求出内函数的值域再求外函数的值域。属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当时,最大,最大值为【解题分析】
设,,在中,由余弦定理,基本不等式可得,根据三角形的面积公式即可求解.【题目详解】解:设,在中,由余弦定理得:,由基本不等式,,可得,当且仅当时取等号,∴,当且仅当时取等号,此时,∴当时,最大,最大值为.【题目点拨】本题主要考查余弦定理,基本不等式,三角形的面积公式的综合应用,考查了计算能力和转化思想,属于基础题.18、(1)T=π,单调增区间为,(2)【解题分析】
(1)化简函数得到,再计算周期和单调区间.(2)分情况的不同奇偶性讨论,根据函数的最值得到答案.【题目详解】解:(1)函数故的最小正周期.由题意可知:,解得:,因为,所以的单调增区间为,(2)由(1)得∵∴,∴,若对任意的和恒成立,则的最小值大于零.当为偶数时,,所以,当为奇数时,,所以,综上所述,的范围为.【题目点拨】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.19、(1);(2)【解题分析】
(1)由的定义域为可知,,恒成立,即可求出的范围.(2)结合的范围,运用配方法,即可求出的值,进而求解不等式.【题目详解】(1)由已知可得对,恒成立,当时,恒成立。当时,则有,解得,综上可知,的取值范围是[0,1](2)由(1)可知的取值范围是[0,1]显然,当时,,不符合.所以,,,由题意得,,,可化为,解得,不等式的解集为。【题目点拨】主要考查了一元二次不等式在上恒成立求参数范围,配方法以及一元二次不等式求解问题,属于中档题.对任意实数恒成立的条件是;而任意实数恒成立的条件是.20、(1),(2)【解题分析】
(1)由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值(2)由题意利用二倍角公式,求得原式子的值.【题目详解】(1)∵已知,,,∴则(2)【题目点拨】本题主要考查同角三角函数的基本关系,两角和差的三角公式、二倍角公式的应用,以及三角函数在各个象限中的符号,属于基础题.21、(Ⅰ)p=1;(Ⅱ)存在实数,使得{an}为等比数列【解题分析】
(Ⅰ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论