版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省建平县高级中学2024届高一数学第二学期期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则不等式的解集为()A. B. C. D.2.2019年是新中国成立70周年,涡阳县某中学为庆祝新中国成立70周年,举办了“我和我的祖国”演讲比赛,某选手的6个得分去掉一个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场制作的6个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以表示,则4个剩余分数的方差为()A.1 B. C.4 D.63.已知是锐角,那么2是()A.第一象限 B.第二象限C.小于的正角 D.第一象限或第二象限4.如图,水平放置的三棱柱的侧棱长和底边长均为4,且侧棱垂直于底面,正视图是边长为4的正方形,则三棱柱的左视图面积为()A. B. C. D.5.等比数列的各项均为正数,且,则()A. B. C. D.6.设△的内角所对的边为,,,,则()A. B.或 C. D.或7.已知,则下列不等式成立的是()A. B. C. D.8.在投资生产产品时,每生产需要资金200万,需场地,可获得300万;投资生产产品时,每生产需要资金300万,需场地,可获得200万,现某单位可使用资金1400万,场地,则投资这两种产品,最大可获利()A.1350万 B.1475万 C.1800万 D.2100万9.角的终边经过点且,则的值为()A.-3 B.3 C.±3 D.510.在△ABC中,,则△ABC为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.若方程表示圆,则实数的取值范围是______.12.已知向量夹角为,且,则__________.13.已知圆的圆心在直线上,半径为,若圆上存在点,它到定点的距离与到原点的距离之比为,则圆心的纵坐标的取值范围是__________.14.已知扇形的面积为,圆心角为,则该扇形半径为__________.15.某幼儿园对儿童记忆能力的量化评价值和识图能力的量化评价值进行统计分析,得到如下数据:468103568由表中数据,求得回归直线方程中的,则.16.函数f(x)=log2(x+1)的定义域为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.△ABC的内角A,B,C所对边分别为,已知△ABC面积为.(1)求角C;(2)若D为AB中点,且c=2,求CD的最大值.18.已知数列的前项和,函数对任意的都有,数列满足.(1)求数列,的通项公式;(2)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在请求出的取值范围;若不存在请说明理由.19.已知,为两非零有理数列(即对任意的,,均为有理数),为一个无理数列(即对任意的,为无理数).(1)已知,并且对任意的恒成立,试求的通项公式;(2)若为有理数列,试证明:对任意的,恒成立的充要条件为;(3)已知,,试计算.20.已知、、是的内角,且,.(1)若,求的外接圆的面积:(2)若,且为钝角三角形,求正实数的取值范围.21.已知是复数,与均为实数,且复数在复平面上对应的点在第一象限,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
先判断函数的单调性,把转化为自变量的不等式求解.【题目详解】可知函数为减函数,由,可得,整理得,解得,所以不等式的解集为.故选B.【题目点拨】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.2、B【解题分析】
由题意得x≥3,由此能求出4个剩余数据的方差.【题目详解】由题意得x≥3,则4个剩余分数的方差为:s2[(93﹣91)2+(90﹣91)2+(90﹣91)2+(91﹣91)2].故选B.【题目点拨】本题考查了方差的计算问题,也考查了茎叶图的性质、平均数、方差等基础知识,是基础题.3、C【解题分析】是锐角,∴,∴是小于的正角4、A【解题分析】
根据题意,得出该几何体左视图的高和宽的长度,求出它的面积,即可求解.【题目详解】根据题意,该几何体左视图的高是正视图的高,所以左视图的高为,又由左视图的宽是俯视图三角形的底边上的高,所以左视图的宽为,所以该几何体的左视图的面积为,故选A.【题目点拨】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.5、D【解题分析】
本题首先可根据数列是各项均为正数的等比数列以及计算出的值,然后根据对数的相关运算以及等比中项的相关性质即可得出结果.【题目详解】因为等比数列的各项均为正数,,所以,,所以,故选D.【题目点拨】本题考查对数的相关运算以及等比中项的相关性质,考查的公式为以及在等比数列中有,考查计算能力,是简单题.6、B【解题分析】试题分析:因为,,,由正弦定理,因为是三角形的内角,且,所以,故选B.考点:正弦定理7、B【解题分析】
利用不等式的基本性质即可得出结果.【题目详解】因为,所以,所以,故选B【题目点拨】本题主要考查不等式的基本性质,属于基础题型.8、B【解题分析】
设生产产品x百吨,生产产品百吨,利润为百万元,先分析题意,找出相关量之间的不等关系,即满足的约束条件,由约束条件画出可行域;要求应作怎样的组合投资,可使获利最大,即求可行域中的最优解,在线性规划的解答题中建议使用直线平移法求出最优解,即将目标函数看成是一条直线,分析目标函数与直线截距的关系,进而求出最优解.【题目详解】设生产产品百吨,生产产品百吨,利润为百万元则约束条件为:,作出不等式组所表示的平面区域:目标函数为.由解得.使目标函数为化为要使得最大,即需要直线在轴的截距最大即可.由图可知当直线过点时截距最大.此时应作生产产品3.25百吨,生产产品2.5百吨的组合投资,可使获利最大.
故选:B.【题目点拨】在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.属于中档题.9、B【解题分析】
根据三角函数的定义建立方程关系即可.【题目详解】因为角的终边经过点且,所以则解得【题目点拨】本题主要考查三角函数的定义的应用,应注意求出的b为正值.10、C【解题分析】
直接利用正弦定理余弦定理化简得到,即得解.【题目详解】由已知得,由正、余弦定理得,即,即,故是直角三角形.故答案为:C【题目点拨】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理水平.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】
把圆的一般方程化为圆的标准方程,得出表示圆的条件,即可求解,得到答案.【题目详解】由题意,方程可化为,方程表示圆,则满足,解得.【题目点拨】本题主要考查了圆的一般方程与圆的标准方程的应用,其中熟记圆的一般方程与圆的标准方程的互化是解答的关键,着重考查了推理与运算能力,属于基础.12、【解题分析】试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.13、【解题分析】因为圆心在直线上,设圆心,则圆的方程为,设点,因为,所以,化简得,即,所以点在以为圆心,为半径的圆上,则,即,整理得,由,得,由,得,所以圆心的纵坐标的取值范围是.点睛:本题主要考查了圆的方程,动点的轨迹方程、两圆的位置关系、解不等式等知识的综合运用,着重考查了转化与化归思想和学生的运算求解能力,解答中根据题设条件得到动点的轨迹方程,利用两圆的位置关系,列出不等式上解答的关键.对于直线与圆的位置关系问题,要熟记有关圆的性质,同时注意数形结合思想的灵活运用.14、2【解题分析】
将圆心角化为弧度制,再利用扇形面积得到答案.【题目详解】圆心角为扇形的面积为故答案为2【题目点拨】本题考查了扇形的面积公式,属于简单题.15、-0.1【解题分析】
分别求出和的均值,代入线性回归方程即可.【题目详解】由表中数据易得,,由在直线方程上,可得【题目点拨】此题考查线性回归方程形式,表示在回归直线上代入即可,属于简单题目.16、{x|x>﹣1}【解题分析】
利用对数的真数大于,即可得解.【题目详解】函数的定义域为:,解得:,故答案为:.【题目点拨】本题主要考查对数函数定义域,考查学生对对数函数定义的理解,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)根据,由正弦定理化角为边,得,再根据余弦定理即可求出角C;(2)由余弦定理可得,又,结合基本不等式可求得.由中点公式的向量式得,再利用数量积的运算,即可求出的最大值.【题目详解】(1)依题意得,,由正弦定理得,,即,由余弦定理得,,又因为,所以.(2)∵,,∴,即.∵为中点,所以,∴当且仅当时,等号成立.所以的最大值为.【题目点拨】本题主要考查利用正、余弦定理解三角形,以及利用中点公式的向量式结合基本不等式解决中线的最值问题,意在考查学生的逻辑推理和数学运算能力,属于中档题.18、(1),;(2).【解题分析】分析:(1)利用的关系,求解;倒序相加求。(2)先用错位相减求,分离参数,使得对于一切的恒成立,转化为求的最值。详解:(1)时满足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,②①-②得即要使得不等式恒成立,恒成立对于一切的恒成立,即,令,则当且仅当时等号成立,故所以为所求.点睛:1、,一定要注意,当时要验证是否满足数列。2、等比乘等差结构的数列用错位相减。3、数列中的恒成立问题与函数中的恒成立问题解法一致。19、(1);(2)证明见解析;(3).【解题分析】
(1)根据不等式可得,把代入即可解出(2)根据化简,利用为有理数即可解决(3)根据题意可知,本题需分为奇数和偶数时讨论,通过求出.【题目详解】(1)∵,∴,即,∴,∵,∴,∴.(2)∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,以上每一步可逆.(3),∴.∵,∴,当时,∴当时,∴,∴为有理数列,∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,∴当时,∴当时,∴,∴.【题目点拨】本题数列的分类问题,数列通项式的求法、有关数列的综合问题等.本题难度、计算量较大,属于难题.20、(1)(2)【解题分析】
(1)根据同角三角函数基本关系先求得,再由正弦定理求得即可;(2)因大小不能确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论