![2024届北京一五六中学数学高一下期末联考模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M01/3A/25/wKhkGWWkDCKAVaYKAAHVrJE5tS4775.jpg)
![2024届北京一五六中学数学高一下期末联考模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M01/3A/25/wKhkGWWkDCKAVaYKAAHVrJE5tS47752.jpg)
![2024届北京一五六中学数学高一下期末联考模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M01/3A/25/wKhkGWWkDCKAVaYKAAHVrJE5tS47753.jpg)
![2024届北京一五六中学数学高一下期末联考模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M01/3A/25/wKhkGWWkDCKAVaYKAAHVrJE5tS47754.jpg)
![2024届北京一五六中学数学高一下期末联考模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M01/3A/25/wKhkGWWkDCKAVaYKAAHVrJE5tS47755.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京一五六中学数学高一下期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在四边形ABCD中,若,则四边形ABCD一定是()A.正方形 B.菱形 C.矩形 D.平行四边形2.已知a、b是两条不同的直线,、是两个不同的平面,若,,,则下列三个结论:①、②、③.其中正确的个数为()A.0 B.1 C.2 D.33.为了了解运动员对志愿者服务质量的意见,打算从1200名运动员中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔为A.40 B.20 C.30 D.124.若,则下列结论不正确的是()A. B. C. D.5.已知,是平面,m,n是直线,则下列命题不正确的是()A.若,则 B.若,则C.若,则 D.若,则6.圆与圆的位置关系是()A.相切 B.内含 C.相离 D.相交7.若,满足不等式组,则的最小值为()A.-5 B.-4 C.-3 D.-28.设变量满足约束条件,则目标函数的最大值为()A.3 B.4 C.18 D.409.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P﹣ABCD为阳马,侧棱PA⊥底面ABCD,PA=AB=AD,E为棱PA的中点,则异面直线AB与CE所成角的正弦值为()A. B. C. D.10.已知四棱锥中,平面平面,其中为正方形,为等腰直角三角形,,则四棱锥外接球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则__________.12.如图,半径为的扇形的圆心角为,点在上,且,若,则__________.13.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.14.若一个圆锥的高和底面直径相等且它的体积为,则此圆锥的侧面积为______.15.设当时,函数取得最大值,则______.16.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,的部分图像如图所示,点,,都在的图象上.(1)求的解析式;(2)当时,恒成立,求的取值范围.18.如图,是平行四边形,平面,,,,.(1)求证:平面;(2)求直线与平面所成角的正弦值.19.已知关于的一元二次函数,从集合中随机取一个数作为此函数的二次项系数,从集合中随机取一个数作为此函数的一次项系数.(1)若,,求函数有零点的概率;(2)若,求函数在区间上是增函数的概率.20.已知内角的对边分别是,若,,.(1)求;(2)求的面积.21.已知向量.(1)求的值;(2)若,且,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】试题分析:因为,根据向量的三角形法则,有,则可知,故四边形ABCD为平行四边形.考点:向量的三角形法则与向量的平行四边形法则.2、C【解题分析】
根据题意,,,,则有,因此,,不难判断.【题目详解】因为,,,则有,所以,,所以①正确,②不正确,③正确,则其中正确命题的个数为2.故选C【题目点拨】本题考查空间中直线与平面之间的位置关系,考查空间推理能力,属于简单题.3、C【解题分析】
根据系统抽样的定义和方法,结合题意可分段的间隔等于个体总数除以样本容量,即可求解.【题目详解】根据系统抽样的定义和方法,结合题意可分段的间隔,故选C.【题目点拨】本题主要考查了系统抽样的定义和方法,其中解答中熟记系统抽样的定义和方法是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解题分析】
A、B利用不等式的基本性质即可判断出;C利用指数函数的单调性即可判断出;D利用基本不等式的性质即可判断出.【题目详解】A,
∵b<a<0,∴−b>−a>0,∴,正确;B,∵b<a<0,∴,正确;C,
,因此C不正确;D,,正确,综上可知:只有C不正确,故选:C.【题目点拨】本题主要考查不等式的基本性质,属于基础题.解答过程注意考虑参数的正负,确定不等号的方向是解题的关键.5、D【解题分析】
由题意找到反例即可确定错误的选项.【题目详解】如图所示,在正方体中,取直线m为,平面为,满足,取平面为平面,则的交线为,很明显m和n为异面直线,不满足,选项D错误;如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,所以A正确;如果两个平面与同一条直线垂直,则这两个平面平行,所以B正确;由A选项和面面垂直的判定定理可得C也正确.本题答案为D.【题目点拨】本题主要考查线面关系有关命题真假的判断,意在考查学生的转化能力和逻辑推理能力,属基础题.6、D【解题分析】
写出两圆的圆心,根据两点间距离公式求得两圆心的距离,发现,所以两圆相交。比较三者之间大小判断位置关系。【题目详解】两圆的圆心分别为:,,半径分别为:,,两圆心距为:,所以,两圆相交,选D。【题目点拨】通过比较圆心距和半径和与半径差直接的关系判断,即比较三者之间大小。7、A【解题分析】
画出不等式组表示的平面区域,平移目标函数,找出最优解,求出的最小值.【题目详解】画出,满足不等式组表示的平面区域,如图所示平移目标函数知,当目标函数过点时,取得最小值,由得,即点坐标为∴的最小值为,故选A.【题目点拨】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8、C【解题分析】不等式所表示的平面区域如下图所示,当所表示直线经过点时,有最大值考点:线性规划.9、B【解题分析】
由异面直线所成角的定义及求法,得到为所求,连接,由为直角三角形,即可求解.【题目详解】在四棱锥中,,可得即为异面直线与所成角,连接,则为直角三角形,不妨设,则,所以,故选B.【题目点拨】本题主要考查了异面直线所成角的作法及求法,其中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.10、D【解题分析】
因为为等腰直角三角形,,故,则点到平面的距离为,而底面正方形的中心到边的距离也为,则顶点正方形中心的距离,正方形的外接圆的半径为,故正方形的中心是球心,则球的半径为,所以该几何体外接球的表面积,应选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据三角函数恒等式,将代入得到,又因为,故得到故答案为。12、【解题分析】根据题意,可得OA⊥OC,以O为坐标为坐标原点,OC,OA所在直线分别为x轴、y轴建立平面直角坐标系,如图所示:则有C(1,0),A(0,1),B(cos30°,-sin30°),即.于是.由,得:,则:,解得.∴.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.13、【解题分析】
根据茎叶图中数据和中位数的定义可构造方程求得.【题目详解】甲组数据的中位数为,解得:故答案为:【题目点拨】本题考查茎叶图中中位数相关问题的求解,属于基础题.14、【解题分析】
先由圆锥的体积公式求出圆锥的底面半径,再结合圆锥的侧面积公式求解即可.【题目详解】解:设圆锥的底面半径为,则圆锥的高为,母线长为,由圆锥的体积为,则,即,则此圆锥的侧面积为.故答案为:.【题目点拨】本题考查了圆锥的体积公式,重点考查了圆锥的侧面积公式,属基础题.15、;【解题分析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.16、【解题分析】
直接利用长度型几何概型求解即可.【题目详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【题目点拨】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)由三角函数图像,求出即可;(2)求出函数的值域,再列不等式组求解即可.【题目详解】解:(1)由的图象可知,则,因为,,所以,故.因为在函数的图象上,所以,所以,即,因为,所以.因为点在函数的图象上,所以,解得,故.(2)因为,所以,所以,则.因为,所以,所以,解得.故的取值范围为.【题目点拨】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题.18、(1)见解析;(2).【解题分析】
(1)证明平面平面,然后利用平面与平面平行的性质得出平面;(2)作于点,连接,证明出平面,可得出直线与平面所成的角为,并计算出三边边长,并利用锐角三角函数计算出的正弦值,即可得出答案.【题目详解】(1)证明:,平面,平面,平面.同理可证平面.,平面平面.平面,平面;(2)作于点,连接,平面,平面,.又,,平面.则为与平面所成角,在中,,,,,,,,,,因此,直线与平面所成角的正弦值为.【题目点拨】本题考查直线与平面平行的证明,同时也考查了直线与平面所成角的计算,在计算空间角时要遵循“一作、二证、三计算”的原则来求解,考查逻辑推理能力,属于中等题.19、(1);(2)【解题分析】
(1)依次列出所有可能的情况,求出满足的情况总数,即可得到概率;(2)列出不等关系,表示出平面区域,求出满足表示的区域的面积,即可得到概率.【题目详解】(1)由题可得,,从集合中随机取一个数作为此函数的二次项系数,从集合中随机取一个数作为此函数的一次项系数,记为,这样的有序数对共有,9种情况;函数有零点,即满足,满足条件的有:,6种情况,所以其概率为;(2),满足条件的有序数对,,即平面直角坐标系内区域:矩形及内部区域,面积为4,函数在区间上是增函数,即满足,,,即,平面直角坐标系内区域:直角梯形及内部区域,面积为3,所以其概率为.【题目点拨】此题考查古典概型与几何概型,关键在于准确得出二次函数有零点和在区间上是增函数,分别所对应的基本事件个数以及对应区域的面积.20、(1);(2).【解题分析】
(1)在中,由正弦定理得,再由余弦定理,列出方程,即可求解得值;(2)由(1)求得,利用三角形的面积公式,即可求解三角形的面积.【题目详解】(1)在中,,,,由正弦定理得,由余弦定理得,解得或不合题意,舍去,(2)由(1)知,所以,所以的面积为.【题目点拨】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度法路往事房屋买卖中介佣金结算合同
- 二零二五年度用工协议与劳动合同在劳务派遣合同中的风险控制
- 二零二五年度汽车抵押贷款购车二手车鉴定评估报告出具合同
- 二零二五年度私了后不追究责任企业并购合同终止及赔偿协议
- 二零二五年度稻田土地承包经营与品牌合作合同
- 2025年度顶账房买卖与社区环境改善服务合同
- 二零二五年度瑜伽馆与瑜伽文化传播机构合作合同
- 二零二五年度空调设备保养与智能化系统集成合同
- 2025年度珠宝行业人力资源外包合同
- 2025年度鱼池租赁与渔业风险管理合同
- 2025年度厨师职业培训学院合作办学合同4篇
- 《组织行为学》第1章-组织行为学概述
- 市场营销试题(含参考答案)
- 2024年山东省泰安市高考物理一模试卷(含详细答案解析)
- 护理指南手术器械台摆放
- 肿瘤患者管理
- 四川省成都市高新区2024年七年级上学期语文期末试卷【含答案】
- 2025年中国航空部附件维修行业市场竞争格局、行业政策及需求规模预测报告
- 国土空间生态修复规划
- 2024年医疗器械经营质量管理规范培训课件
- DB11T 1136-2023 城镇燃气管道翻转内衬修复工程施工及验收规程
评论
0/150
提交评论