新未来工作趋势报告+Microsoft+New+Future+of+Work+Report+2023_第1页
新未来工作趋势报告+Microsoft+New+Future+of+Work+Report+2023_第2页
新未来工作趋势报告+Microsoft+New+Future+of+Work+Report+2023_第3页
新未来工作趋势报告+Microsoft+New+Future+of+Work+Report+2023_第4页
新未来工作趋势报告+Microsoft+New+Future+of+Work+Report+2023_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MicrosoftNew

FutureofWork

Report2023

Asummaryofrecentresearchfrom

Microsoftandaroundtheworldthat

canhelpuscreateanewandbetter

futureofworkwithAI.

2

MicrosoftNewFutureofWorkReport

aka.ms/nfw

EditorsandAuthors

•Editors:

JennaButler

(PrincipalAppliedResearchScientist),

SoniaJaffe

(PrincipalResearcher),

NancyBaym

(SeniorPrincipalResearchManager),

MaryCzerwinski

(PartnerResearchManager),

ShamsiIqbal

(PrincipalApplied&DataScientist),

Kate

Nowak

(PrincipalAppliedScientist),

SeanRintel

(SeniorPrincipalResearcher),

AbigailSellen

(VPDistinguishedScientist),Mihaela

Vorvoreanu(DirectorAetherUXResearch&EDU),

BrentHecht

(PartnerDirectorofAppliedScience),and

JaimeTeevan

(Chief

ScientistandTechnicalFellow)

•Authors:NajeebAbdulhamid,JudithAmores,ReidAndersen,KagonyaAwori,MaxamedAxmed,danahboyd,JamesBrand,GeorgBuscher,DeanCarignan,MartinChan,AdamColeman,ScottCounts,MadeleineDaepp,AdamFourney,DanGoldstein,Andy

Gordon,AaronHalfaker,JavierHernandez,JakeHofman,JennyLay-Flurrie,VeraLiao,SiânLindley,SathishManivannan,CharltonMcilwain,SubigyaNepal,JenniferNeville,StephanieNyairo,JackiO'Neill,VictorPoznanski,GonzaloRamos,NaguRangan,LaceyRosedale,DavidRothschild,TaraSafavi,AdvaitSarkar,AvaScott,ChiragShah,NehaShah,TenyShapiro,RylandShaw,Auste

Simkute,JinaSuh,SiddharthSuri,IoanaTanase,LevTankelevitch,MengtingWan,RyenWhite,LongqiYang

Referencingthisreport:

•Onsocialmedia,pleaseincludethereportURL(

https://aka.ms/nfw2023

).

•Inacademicpublications,pleaseciteas:Butler,J.,Jaffe,S.,Baym,N.,Czerwinski,M.,Iqbal,S.,Nowak,K.,Rintel,R.,Sellen,A.,

Vorvoreanu,M.,Hecht,B.,andTeevan,J.(Eds.).MicrosoftNewFutureofWorkReport2023.MicrosoftResearchTechReportMSR-TR-2023-34(

https://aka.ms/nfw2023

),2023.

3

MicrosoftNewFutureofWorkReport

aka.ms/nfw

Welcometothe2023MicrosoftNewFutureofWorkReport!

Inthepastthreeyears,therehavebeennotonebuttwogenerationalshiftsinhowworkgetsdone,bothofwhichwereonly

possiblebecauseofdecadesofresearchanddevelopment.ThefirstshiftoccurredwhenCOVIDmadeusrealizehowpowerfulremoteandhybridworktechnologieshadbecome,aswellashowmuchsciencewasavailabletoguideusinhowto(andhownotto)usethesetechnologies.Thesecondarrivedthisyear,asitbecameclearthat,atlonglast,generativeAIhadadvancedtothepointwhereitcouldbevaluabletohugeswathsoftheworkpeopledoeveryday.

WebegantheNewFutureofWorkReportseries

in2021

,attheheightoftheshifttoremotework.Thegoalofthatreportwastoprovideasynthesisofnew–andnewlyrelevant–researchtoanyoneinterestedinreimaginingworkforthebetterasa

decades-oldapproachtoworkwaschallenged.ThesecondNewFutureofWorkReport,published

in2022

,focusedonhybridworkandwhatresearchcouldteachusaboutintentionallyre-introducingco-locationintopeople’sworkpractices.Thisyear’sedition,thethirdintheseries,continueswiththesamegoal,butcentersonresearchrelatedtointegratingLLMsintowork.

Throughout2023,AIandthefutureofworkhavefrequentlybeenonthemetaphorical–andoftenliteral–frontpagearoundtheworld.TherehavebeenmanyexcellentarticlesaboutthewaysinwhichworkmaychangeasLLMsareincreasingly

integratedintoourlives.Assuch,inthisyear’sreportwefocusspecificallyonareasthatwethinkdeserveadditionalattentionorwherethereisresearchthathasbeendoneatMicrosoftthatoffersauniqueperspective.Thisisareportthatshouldbereadasacomplementtotheexistingliterature,ratherthanasasynthesisofallofit.

Thisisararetime,oneinwhichresearchwillplayaparticularlyimportantroleindefiningwhatthefutureofworklookslike.Atthisspecialmoment,scientistscan’tjustbepassiveobserversofwhatishappening.Rather,wehavetheresponsibilitytoshapeworkforthebetter.Wehopethisreportcanhelpourcolleaguesaroundworldmakeprogresstowardsthisgoal.

-JaimeTeevan,ChiefScientistandTechnicalFellow

4

MicrosoftNewFutureofWorkReport

aka.ms/nfw

ThisreportemergesfromMicrosoft’sNewFutureofWorkinitiative

Microsofthashelpedshapeinformationworksinceitsfounding.However,aconfluenceofrecentcircumstances–remotework,

hybridwork,LLMs–havecreatedanunprecedentedopportunity

forthecompanytoreimaginehowAIandotherdigitaltechnologiescanmakeworkbetterforeveryone.

Sinceitsinception,theNewFutureofWork(NFW)initiativehasbroughttogetherresearchersfromabroadrangeof

organizationsanddisciplinesacrossMicrosofttofocusonthe

mostimportanttechnologiesshapinghowpeoplework.The

initiativeisworkingtocreatethenewfutureofwork–onethatisequitable,inclusive,meaningful,andproductive–insteadof

predictingorwaitingforit.Itdoesthisbyconductingprimary

researchandsynthesizingexistingresearchtosharewiththeresearchcommunity.Thisreportisoneofthemanypublic

resourcesithasproduced.

ThereadercanfindtheNewFutureofWorkinitiative’smany

otherresearchpapers,practicalguides,reportsandwhitepapersattheinitiative’swebsite:

https://aka.ms/nfw

.

https://aka.ms/nfw

MicrosoftNewFutureofWorkReport

aka.ms/nfw

Reportoverview

ThisreportprovidesinsightintoAIandworkpractices.Inityouwillfindcontentrelatedto:

•LLMsforInformationWork:HowdoLLMsaffectthespeedandqualityofcommoninformationworktasks?LLMscanboostproductivityforinformationworkers,buttheyalsorequirecarefulevaluationandadaptation.

•LLMsforCriticalThinking:HowcanLLMshelpusbreakdownandbuildupcomplextasks?LLMscanhelpustacklecomplextasksbyprovokingcriticalthinking,enablingmicroproductivity,andshiftingthebalanceofskills.

•Human-AICollaboration:HowcanwecollaborateeffectivelywithLLMs?EffectivecollaborationwithLLMsdependsonhowweprompt,complement,relyon,andauditthem.

•LLMsforComplexandCreativeTasks:HowcanLLMstackletasksthatgobeyondsimpleinformationretrievalorgeneration?LLMscansupportcomplexandcreativetasksby,forinstance,enhancingmetacognition.

•Domain-SpecificApplicationsofLLMs:HowareLLMsbeingusedandaffectingdifferentdomainsofwork?Wefocusspecificsonsoftwareengineering,medicine,socialscience,andeducation.

•LLMsforTeamCollaborationandCommunication:HowcanLLMshelpteamsworkandcommunicatebetter?LLMscanhelpteamsimproveinteraction,coordination,andworkflowsbyprovidingreal-time,retrospectivefeedbackandleveragingholisticframeworks.

•KnowledgeManagementandOrganizationalChanges:HowisAIchangingthenatureanddistributionofknowledgeinorganizations?LLMsmight,forinstance,finallyeliminateknowledgesilosinlargecompanies.

•ImplicationsforFutureWorkandSociety:WhatimplicationswillAIhaveforthefutureofworkandsociety?WecanshapeAI’simpactbyaddressingadoptiondisparities,fosteringinnovation,leadinglikescientists,andrememberingthatthefutureofworkisinourcontrol.

MicrosoftNewFutureofWorkReport

aka.ms/nfw

LabexperimentsshowLLMscansubstantiallyimproveproductivityon

commoninformationworktasks,althoughtherearesomequalifiers

LLM-basedtoolscanhelpworkerscompleteavarietyoftasksmorequicklyandincreaseoutputquality.

•StudieshavefoundthatpeoplecompletesimulatedinformationworktasksmuchfasterandwithahigherqualityofoutputwhenusinggenerativeAI-basedtools,

•Peopletook37%lesstimeoncommonwritingtasks(NoyandZhang2023)

•BCGconsultantsproduced>40%higherqualityononesimulatedconsultingproject(Dell’Acquaetal.2023).

•Userswerealso2xfasteratsolvingsimulateddecision-makingproblemswhenusingLLM-basedsearchovertraditionalsearch(Spathariotietal.2023).

•Forsometasks,increasedspeedcancomewithmoderatelylowercorrectness.

•WhentheLLMmademistakes,BCGconsultantswithaccesstothetoolwere19percentagepointsmorelikelytoproduceincorrectsolutions(Dell’Acquaetal.2023).

•Spathariotietal.(2023)developasimpleUX-basedinterventionscanworkwellathelpingpeoplenavigatethesetradeoffs.

•Usersmayneedhelpnegotiatingthetradeoffsinvolvedtomaximizeproductivitygains

•Howtask-levelgainstranslatetojob-levelgainswilldependonwhether

gainsextendtoothertasksandhowthetoolsareintegratedintoworkflows

Qualityofoutput(Treated=usingChatGPT)(Noy&Zhang2023)

Estimatesandconfidenceintervalsforaveragelog(time)bycondition,(Spathariotietal.2023)

Dell’Acqua,F.,etal.(2023).

NavigatingtheJaggedTechnologicalFrontier:FieldExperimentalEvidenceoftheEffectsofAIonKnowledgeWorkerProductivityandQuality

.SSRNWorkingPaper4573321.Noy,S.,&Zhang,W.(2023).

ExperimentalEvidenceontheProductivityEffectsofGenerativeArtificialIntelligence

.SSRNpreprint.

MicrosoftStudy:Spatharioti,S.E.,etal.(2023).

ComparingTraditionalandLLM-basedSearchforConsumerChoice:ARandomizedExperiment

.arXivpreprint.

6

TaskcompletiontimesforlabstudiesofCopilotforM365(Cambonetal2023)

MicrosoftNewFutureofWorkReport

aka.ms/nfw

CopilotforM365savestimeforavarietyoftasksinlabstudiesandsurveys

UsersalsoreportCopilotreducestheeffortrequired.Effectsonqualityaremostlyneutral

Microsoft’sAIandProductivityReportsynthesizesresultsfrom8earlystudies,mostfocusedontheuseofM365Copilot

forinformationworkertasksforwhichLLMsaremostlikelytoprovidesignificantvalue(Cambonetal.,2023).

•Tasksincludedmeetingsummarization,informationretrieval,andcontentcreation

•StudyparticipantswithCopilotcompletedexperimenter-designedtasksin26-73%asmuchtimeasthosewithoutCopilot

•AsurveyofenterpriseuserswithaccesstoCopilotalsoshowedsubstantialperceivedtimesavings

•73%agreedthatCopilothelpedthemcompletetasksfaster,and85%saiditwouldhelpthemgettoagoodfirstdraftfaster.

•Manystudiesfoundnostatisticallysignificantormeaningfuleffectonquality

•However,inthemeetingsummarizationstudywhereCopilotuserstookmuchlesstime,theirsummaries

included11.1outof15specificpiecesofinformationintheassessmentrubricversusthe12.4of15foruserswhodidnothaveaccesstoCopilot.

•Intheotherdirection,thestudyofM365DefenderSecurityCopilotfoundsecuritynoviceswithCopilotwere44%moreaccurateinansweringquestionsaboutthesecurityincidentstheyexamined.

•AstudyoftheOutlook“Soundlikeme”featurefoundCopilotuserslikemanyaspectsoftheemailsitgeneratedmorethanhuman-writtenones,butcouldsometimestellthedifferencebetweenCopilotwritingversushumanwriting.

•OfenterpriseCopilotusers,68%ofrespondentsagreedthatCopilotactuallyimprovedqualityoftheirwork.

•UsersalsoreportedtasksrequiredlesseffortwithCopilot

•IntheTeamsMeetingStudy,participantswithaccesstoCopilotfoundthetasktobe58%lessdrainingthanparticipantswithoutaccess

•AmongenterpriseCopilotusers,72%agreedthatCopilothelpedthemspendlessmentaleffortonmundaneorrepetitivetasks

7

MicrosoftStudy:Cambonetal(2023),

EarlyLLM-basedToolsforEnterpriseInformationWorkersLikelyProvideMeaningfulBooststoProductivity

.MSFTTechnicalReport.

MicrosoftNewFutureofWorkReport

aka.ms/nfw

TheevidencepointstoLLMshelpingtheleastexperiencedthemost

Mostlyearlystudieshavefoundthatneworlow-skilledworkersbenefitthemostfromLLMs.

•InstudyingthestaggeredrolloutofagenerativeAI-basedconversational

assistant,Brynjolfssonetal.(2023)foundthatthetoolhelpednoviceandlow-skilledworkersthemost.

•Theyfoundsuggestiveevidencethatthetoolhelpeddisseminatetacitknowledgethattheexperiencedandhigh-skilledworkersalreadyhad.

•Inalabexperiment,participantswhoscoredpoorlyontheirfirstwritingtask

improvedmorewhengivenaccesstoChatGPTthanthosewithhighscoresontheinitialtask(seegraph,NoyandZhang2023).

•Pengetal.(2023)alsofoundsuggestiveevidencethatGithubCopilotwasmorehelpfultodeveloperswithlessexperience.

•InanexperimentwithBCGemployeescompletingaconsultingtask,thebottom-halfofsubjectsintermsofskillsbenefitedthemost,showinga43%improvementinperformance,comparedtothetophalfwhoseperformanceincreasedby17%(Dell’Acquaetal.,2023).

•RecentworkbyHaslbergeretal.(2023)highlightssomecomplexitiesandnuanceinthesetrends,includingcasesinwhichLLMsmightincreaseperformance

disparities.

GreentrianglesrepresentthosewhogotaccesstoChatGPTforthesecondtask.Theirscoresacrossthetwotasksareless

correlated.(Noy&Zhang2023)

Brynjolfsson,E.,etal.(2023).

GenerativeAIatWork

.NBERWorkingPaper31161.

Haslberger,M.etal.(2023)

NoGreatEqualizer:ExperimentalEvidenceonAIintheUKLaborMarket

.SSRNWorkingPaper4594466,

8

Dell’Acqua,F.,etal.(2023).

NavigatingtheJaggedTechnologicalFrontier:FieldExperimentalEvidenceoftheEffectsofAIonKnowledgeWorkerProductivityandQuality

.SSRNWorkingPaper4573321.Noy,S.,&Zhang,W.(2023).

ExperimentalEvidenceontheProductivityEffectsofGenerativeArtificialIntelligence

.SSRNWorkingPaper4375283.

MicrosoftStudy:Peng,S.,etal.(2023).

TheImpactofAIonDeveloperProductivity:EvidencefromGitHubCopilot

.arXivpreprint2302.06590.

MicrosoftNewFutureofWorkReport

aka.ms/nfw

Criticalthinking:LLM-basedtoolscanbeusefulprovocateurs

ReconceptualizingAIsystemsas“provocateurs”inadditionto“assistants”canpromotecriticalthinking

inknowledgework

•AsAIisappliedtomoregenerativetasks,humanworkisshiftingto“criticalintegration”ofAIoutput,requiringexpertiseandjudgement(Sarkar2023).

•Movingbeyondjusterrorcorrection,AIprovocateurswouldchallengeassumptions,encourageevaluation,andoffercounterarguments.

•InteractiondesignofprovocativeAIneedstostrikeabalancebetweenusefulcriticismandoverwhelmingpeople.

•Frameworksthatstructurecriticalthinkingobjectives(e.g.,Bloom’s

taxonomy)andToulmin’smodeloperationalizeargumentanalysis,whichcouldinformprovocativeAIdesign(Kneupper1978).

•Interactivetechnologiesthatsparkdiscussionandengageuserscontributetocriticalthinkingdevelopment(Sunetal.2017;Leeetal.2023).

ImageofBloom’sTaxonomy(Bezjak,S.,etal.2018)

MicrosoftStudy:Sarkar,A.(2023).

ExploringPerspectivesontheImpactofArtificialIntelligenceontheCreativityofKnowledgeWork:BeyondMechanisedPlagiarismandStochasticParrots

ProceedingsoftheACMSymposiumonHuman-ComputerInteractionforWork(CHIWORK2023).

Kneupper,C.W.(1978).Teachingargument:AnintroductiontotheToulminmodel.CollegeCompositionandCommunication29,3..

9

Sun,N.,etal.(2017).Criticalthinkingincollaboration:Talkless,perceivemore.Proceedingsofthe2017CHIConferenceExtendedAbstractsonHumanFactorsinComputingSystems.

Lee,S.,etal.(2023).FosteringYouth’sCriticalThinkingCompetencyAboutAIthroughExhibition.Proceedingsofthe2023CHIConferenceonHumanFactorsinComputingSystems.

Bezjak,S.etal,(2018).

OpenScienceTrainingHandbook

MicrosoftNewFutureofWorkReport

aka.ms/nfw

AIcanenhancemicroproductivitypractices

AIcanbeharnessedtoaugmenthumancapabilitiesthroughnoveltaskmanagementstrategies

•Theconceptof“microproductivity”,inwhichcomplextasksaredecomposedintosmallersubtasksand

performedin“micromoments”bythepersonmostskilledtodoso,canbeenhancedthroughautomation(Teevan2016).

•Forexample,Kokkalisetal.(2013)demonstratedthathighleveltasksbrokenintomultistepactionplansthroughcrowdsourcingresultinpeoplecompletingsignificantlymoretasks(47.1%task

completion)comparedtothecontrolconditionofnoplans(37.8%).ThesebenefitswerescaledbyapplyingNLPalgorithmstoautomaticallycreateactionplansforalargervarietyoftasksbasedonatrainingsetofsimilartasks,andtheplanswerefurtherrefinedthroughhumanintervention.

•Kauretal.(2018)showedthatusingafixedvocabularytobreakdowncommentsinadocumentintoaseriesofsubtasksresultedina28%increaseinsubtasksthatcanbehandedofftocrowdsourcingorautomation,leavingasmallerpercentageofsubtasksleftforthedocumentauthor.

•AIcanhelpwithautomaticidentificationofmicromomentsandmicrotasks,improvingoverallqualityandefficiency.

•Contextualidentificationofmicromomentsbasedonprecedingactivitiesandlocationcanyieldupto80.7%precision(Kangetal.2017);suchmicromomentscanbeusedforlearning(Caietal.2017),

creationofaudiobooks(Kangetal.2017),editingdocuments(Augustetal.2020),andcoding(Williamsetal.2018).

•Whiteetal.(2021)demonstratedhowmachinelearningcanbeleveragedtoautomaticallydetectmicrotasksfromuser-generatedtasklistsresultinginapositiveprecisionof75%,andforecast

duration,withthebestclassifierperformancefortaskswithdurationof5minutes.

Decomposinghighleveltasksintoconcretesteps(plans)makesthemmoreactionableresultinginhighertaskcompletionrates.Online

crowdsdothedecomposition,algorithmsidentifyandreuseexistingplans.(Kokkalis2013)

MicrosoftStudy:Teevan,J.(2016).

Thefutureofmicrowork

.XRDS23,2.

Kokkalis,N.,etal.2013.TaskGenies:

AutomaticallyProvidingActionPlansHelpsPeopleCompleteTasks

.ACMTransactionsonComputer-HumanInteraction20,5.

Kaur,H.etal.2018.

CreatingBetterActionPlansforWritingTasksviaVocabulary-BasedPlanning

.ProceedingsoftheACMonHuman-ComputerInteraction.2,CSCW.

Kang,B.etal.(2017).Zaturi:

WePutTogetherthe25thHourforYou.CreateaBookforYourBaby

.InProceedingsofthe2017ACMConferenceonComputerSupportedCooperativeWorkandSocialComputing(CSCW‘17).Cai,C.J.,Ren,A.,&Miller,R.C.(2017).

WaitSuite:ProductiveUseofDiverseWaitingMoments

.ACMTransactionsonComputerHumanInteraction24,1.

10

MicrosoftStudy:August,T.,etal.(2020).

CharacterizingtheMobileMicrotaskWritingProcess

.22ndInternationalConferenceonHuman-ComputerInteractionwithMobileDevicesandServices(MobileHCI‘20).

MicrosoftStudy:Williams,A.,(2019).

Mercury:EmpoweringProgrammers'MobileWorkPracticeswithMicroproductivity

.Proceedingsofthe32ndAnnualACMSymposiumonUserInterfaceSoftwareandTechnology

MicrosoftStudy:White,R.W.,etal.(2021).

MicrotaskDetection.

ACMTrans.Inf.Syst.39,2.

MicrosoftNewFutureofWorkReport

aka.ms/nfw

Analyzingandintegratingmaybecomemoreimportantskillsthansearchingandcreating

WithcontentbeinggeneratedbyAI,knowledgeworkmayshifttowardsmoreanalysisandcriticalintegration

•Informationsearchaswellascontentproduction(manuallytyping,writingcode,designingimages)isgreatlyenhancedbyAI,sogeneralinformationworkmayshifttointegratingandcriticallyanalyzingretrievedinformation

•WritingwithAIisshowntoincreasetheamountoftextproducedaswellastoincreasewritingefficiency(Biermannetal.2022,Leeetal2022)

•Withmoregeneratedtextavailable,theskillsofresearch,

conceptualization,planning,promptingandeditingmaytakeonmore

importanceasLLMsdothefirstroundofproduction(e.g.,Mollick2023).

•Skillsnotdirectlytocontentproduction,suchasleading,dealingwithcriticalsocialsituations,navigatinginterpersonaltrustissues,and

demonstratingemotionalintelligence,mayallbemorevaluedintheworkplace(LinkedIn2023)

Thecriticalintegration“sandwich”:whenAIhandlesproduction,humancritical

thinkingisappliedateitherendoftheprocesstocompleteknowledge

workflows(Sarkar,2023).

Biermann,O.C.,etal.(2022).

FromTooltoCompanion:StorywritersWantAIWriterstoRespectTheirPersonalValuesandWritingStrategies

.Proceedingsofthe2022ACMDesigningInteractiveSystemsConference(DIS'22).Mina,L.,etal.(2022).

CoAuthor:DesigningaHuman-AICollaborativeWritingDatasetforExploringLanguageModelCapabilities

.Proceedingsofthe2022CHIConferenceonHumanFactorsinComputingSystems(CHI'22).

11

Mollick,E.(2023).

MyclassrequiredAI.Here'swhatI'velearnedsofar

.OneUsefulThing

LinkedIn(2023).

FutureofWorkReport:AIatWork

.

MicrosoftNewFutureofWorkReport

aka.ms/nfw

Constructingoptimalpromptsisdifficult

Promptsaretheprimaryinterfaceforbothusersanddeveloperstointeractwithlargelanguagemodels,butconsistentlydevelopingeffectivepromptsisachallenge

•PrecisepromptcompositioniscriticalinachievingthedesiredLLMoutput,withsemanticallysimilarpromptsyieldingsignificantlydifferent,sometimesincorrect,outputs(Jiangetal2020).

•Writingeffectivepromptscanrequiresignificanteffort,includingmultipleiterationsofmodificationandtesting(Jiangetal2022).

•Promptbehaviorcanbebrittleandnon-intuitive:

•Seeminglyminorchanges,includingcapitalizationandspacingcanresultindramaticallydifferentLLMoutputs(Holtzman2021,Aroraetal.2023)

•Theorderofpromptelements,suchassections,few-shotexamplesorevenwordscansignificantlyimpactaccuracy,insomecasesvaryingfromnearrandomchancetostate-of-the-art(Zhaoetal.2021,Kaddouretal.2023).

•Thesamepromptcanresultinsignificantlydifferentperformanceacrossmodelfamilies,evenwithmodelsofsimilarparametersize(Sanhetal.2022).

•Whilemanypromptingtechniqueshavebeendeveloped,thereislittletheoreticalunderstandingforwhyanyparticulartechniqueissuitedtoanyparticulartask(Zhaoetal.2021).

•Endusersofprompt-basedapplicationsstrugglemorethanpromptengineerstoformulateeffectiveprompts(Zamfirescu-Pereiraetal.2023).

Jiang,Z.etal.(2020).

HowCanWeKnowWhatLanguageModelsKnow?

TransactionsoftheAssociationforComputationalLinguistics,8.

Jiang,E.etal.(2022).

PromptMaker:Prompt-basedPrototypingwithLargeLanguageModels

.ExtendedAbstractsofthe2022CHIConferenceonHumanFactorsinComputingSystems

Holtzman,A.etal.(2021).SurfaceFormCompetition:WhytheHighestProbabilityAnswerIsn’tAlwaysRight.EMNLP.

Arora,S.etal.(2023).

Askmeanything:Asimplestrategyforpromptinglanguagemodels

.TheEleventhInternationalConferenceonLearningRepresentations.

Zhao,Z.,etal.(2021).

CalibrateBeforeUse:ImprovingFew-shotPerformanceofLanguageModels

.Proceedingsofthe38thInternationalConferenceonMachineLearning.

Kaddour,J.,etal.(2023).

ChallengesandApplicationsofLargeLanguageModels

.arXivpreprint.

12

Sanh,V.etal.(2022)

MultitaskPromptedTrainingEnablesZero-ShotTaskGeneralization

.InternationalConferenceonLearningRepresentations

Zamfirescu-Pereira,J.D.,etal.(2023).

WhyJohnnyCan’tPrompt:HowNon-AIExpertsTry(andFail)toDesignLLMPrompts

.(CHI'23).

MicrosoftNewFutureofWorkReport

aka.ms/nfw

Butconstructingeffectivepromptsisbecomingeasier

Basemodeltraining,toolsandLLMsthemselvesarehelpingimprovepromptperformance

•Significantresearchisdevotedtoimprovingmodelinstructionfollowing.

•Fine-tuningwithhumanfeedbackcandramaticallyimproveLLMsabilitytofollowpromptinstructions,evenwhencomparedtomodelswith100xparameters(Ouyangetal.2022).

•Utilizingmulti-taskandchain-of-thoughttrainingdatasignificantlyimprovedinstruction-followingcapabilities(Chungetal.2022).

•LLMshavebeenshowntobeeffectivepromptoptimizers.

•PromptoptimizationtechniquesthatutilizeanLLMtoiterativelyprovidefeedbackandproducenewversionsofahand-craftedseedpromptcansignificantlyimproveperformance(Pryzantetal.2023).

•Multi-stepoptimizationwithnaturallanguagetaskdescriptionsandscoredoptimizationexamplescaninduceanLLMtogeneratenew,higherperformingpromptvariations(Yangetal.2023).

•Inspiredbyevolutionaryalgorithms,anLLMcanbeusedtogeneratenewpromptcandidatesbymutatingpromptsfromapopulation,evaluatingtheirfitnessagainstatestsetovermultiplegenerations(Fernandoetal.2023).

•Recentworksuggestsoptimizedpromptscanoutperformspecificallyfine-tunedmodelsinanumberofimportantdomains,especiallymedicine(Norietal.2023).

Ouyang,L.,etal.(2022).Traininglanguagemodelstofollowinstructionswithhumanfeedback.AdvancesinNeuralInformationProcessingSystems,35.

Chung,H.W.,etal.(2023)

Scalinginstruction-finetunedlanguagemodels

.arXivpreprint.

Pryzant,R.,etal.(2023).

AutomaticPromptOptimizationwithGradientDescentandBeamSearch

.arXivpreprint.

Yang,C.,etal.(2023).

Largelanguagemodelsasoptimizers

.arXivpreprint.

13

Nori,Harsha,etal.

CanGeneralistFoundationModelsOutcompeteSpecial-PurposeTuning?CaseStudyinMedicine

arXivpreprint.

Fernando,C.,etal.(2023).

Promptbreeder:Self-referentialself-improvementviapromptevolution

.arXivpreprint.

MicrosoftNewFutureofWorkReport

aka.ms/nfw

Peoplearealsolearningtopromptmoreeffectively

AspeoplegetbetteratcommunicatingwithLLMs,theyaregettingbetterresults

•Promptguidanceiscommonlyusedasawayforpeopletolearntopromptbetter.

•ResearchsuggeststhattrainingonhowtopromptcanleadtogreaterproductivitygainsfromLLMtools(Dell’Acquaetal.2023).

•Usingalensinformedbythepsycholinguisticconceptofgrounding(Clark1996),Teevan(2023)arguesinHBRthateffectivecommunicationwithgenerativeAIrequiresprovidingcontextualinformation,specifyingthedesiredoutput,andverifyingtheaccuracyofthegeneratedcontent.

•Manyotherguidesandreferencematerialsarealsoavailable,includingarecentWorkLabarticle(Microsoft2023)andOpenAI’sdocumentation

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论