版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MicrosoftNew
FutureofWork
Report2023
Asummaryofrecentresearchfrom
Microsoftandaroundtheworldthat
canhelpuscreateanewandbetter
futureofworkwithAI.
2
MicrosoftNewFutureofWorkReport
aka.ms/nfw
EditorsandAuthors
•Editors:
JennaButler
(PrincipalAppliedResearchScientist),
SoniaJaffe
(PrincipalResearcher),
NancyBaym
(SeniorPrincipalResearchManager),
MaryCzerwinski
(PartnerResearchManager),
ShamsiIqbal
(PrincipalApplied&DataScientist),
Kate
Nowak
(PrincipalAppliedScientist),
SeanRintel
(SeniorPrincipalResearcher),
AbigailSellen
(VPDistinguishedScientist),Mihaela
Vorvoreanu(DirectorAetherUXResearch&EDU),
BrentHecht
(PartnerDirectorofAppliedScience),and
JaimeTeevan
(Chief
ScientistandTechnicalFellow)
•Authors:NajeebAbdulhamid,JudithAmores,ReidAndersen,KagonyaAwori,MaxamedAxmed,danahboyd,JamesBrand,GeorgBuscher,DeanCarignan,MartinChan,AdamColeman,ScottCounts,MadeleineDaepp,AdamFourney,DanGoldstein,Andy
Gordon,AaronHalfaker,JavierHernandez,JakeHofman,JennyLay-Flurrie,VeraLiao,SiânLindley,SathishManivannan,CharltonMcilwain,SubigyaNepal,JenniferNeville,StephanieNyairo,JackiO'Neill,VictorPoznanski,GonzaloRamos,NaguRangan,LaceyRosedale,DavidRothschild,TaraSafavi,AdvaitSarkar,AvaScott,ChiragShah,NehaShah,TenyShapiro,RylandShaw,Auste
Simkute,JinaSuh,SiddharthSuri,IoanaTanase,LevTankelevitch,MengtingWan,RyenWhite,LongqiYang
Referencingthisreport:
•Onsocialmedia,pleaseincludethereportURL(
https://aka.ms/nfw2023
).
•Inacademicpublications,pleaseciteas:Butler,J.,Jaffe,S.,Baym,N.,Czerwinski,M.,Iqbal,S.,Nowak,K.,Rintel,R.,Sellen,A.,
Vorvoreanu,M.,Hecht,B.,andTeevan,J.(Eds.).MicrosoftNewFutureofWorkReport2023.MicrosoftResearchTechReportMSR-TR-2023-34(
https://aka.ms/nfw2023
),2023.
3
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Welcometothe2023MicrosoftNewFutureofWorkReport!
Inthepastthreeyears,therehavebeennotonebuttwogenerationalshiftsinhowworkgetsdone,bothofwhichwereonly
possiblebecauseofdecadesofresearchanddevelopment.ThefirstshiftoccurredwhenCOVIDmadeusrealizehowpowerfulremoteandhybridworktechnologieshadbecome,aswellashowmuchsciencewasavailabletoguideusinhowto(andhownotto)usethesetechnologies.Thesecondarrivedthisyear,asitbecameclearthat,atlonglast,generativeAIhadadvancedtothepointwhereitcouldbevaluabletohugeswathsoftheworkpeopledoeveryday.
WebegantheNewFutureofWorkReportseries
in2021
,attheheightoftheshifttoremotework.Thegoalofthatreportwastoprovideasynthesisofnew–andnewlyrelevant–researchtoanyoneinterestedinreimaginingworkforthebetterasa
decades-oldapproachtoworkwaschallenged.ThesecondNewFutureofWorkReport,published
in2022
,focusedonhybridworkandwhatresearchcouldteachusaboutintentionallyre-introducingco-locationintopeople’sworkpractices.Thisyear’sedition,thethirdintheseries,continueswiththesamegoal,butcentersonresearchrelatedtointegratingLLMsintowork.
Throughout2023,AIandthefutureofworkhavefrequentlybeenonthemetaphorical–andoftenliteral–frontpagearoundtheworld.TherehavebeenmanyexcellentarticlesaboutthewaysinwhichworkmaychangeasLLMsareincreasingly
integratedintoourlives.Assuch,inthisyear’sreportwefocusspecificallyonareasthatwethinkdeserveadditionalattentionorwherethereisresearchthathasbeendoneatMicrosoftthatoffersauniqueperspective.Thisisareportthatshouldbereadasacomplementtotheexistingliterature,ratherthanasasynthesisofallofit.
Thisisararetime,oneinwhichresearchwillplayaparticularlyimportantroleindefiningwhatthefutureofworklookslike.Atthisspecialmoment,scientistscan’tjustbepassiveobserversofwhatishappening.Rather,wehavetheresponsibilitytoshapeworkforthebetter.Wehopethisreportcanhelpourcolleaguesaroundworldmakeprogresstowardsthisgoal.
-JaimeTeevan,ChiefScientistandTechnicalFellow
4
MicrosoftNewFutureofWorkReport
aka.ms/nfw
ThisreportemergesfromMicrosoft’sNewFutureofWorkinitiative
Microsofthashelpedshapeinformationworksinceitsfounding.However,aconfluenceofrecentcircumstances–remotework,
hybridwork,LLMs–havecreatedanunprecedentedopportunity
forthecompanytoreimaginehowAIandotherdigitaltechnologiescanmakeworkbetterforeveryone.
Sinceitsinception,theNewFutureofWork(NFW)initiativehasbroughttogetherresearchersfromabroadrangeof
organizationsanddisciplinesacrossMicrosofttofocusonthe
mostimportanttechnologiesshapinghowpeoplework.The
initiativeisworkingtocreatethenewfutureofwork–onethatisequitable,inclusive,meaningful,andproductive–insteadof
predictingorwaitingforit.Itdoesthisbyconductingprimary
researchandsynthesizingexistingresearchtosharewiththeresearchcommunity.Thisreportisoneofthemanypublic
resourcesithasproduced.
ThereadercanfindtheNewFutureofWorkinitiative’smany
otherresearchpapers,practicalguides,reportsandwhitepapersattheinitiative’swebsite:
https://aka.ms/nfw
.
https://aka.ms/nfw
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Reportoverview
ThisreportprovidesinsightintoAIandworkpractices.Inityouwillfindcontentrelatedto:
•LLMsforInformationWork:HowdoLLMsaffectthespeedandqualityofcommoninformationworktasks?LLMscanboostproductivityforinformationworkers,buttheyalsorequirecarefulevaluationandadaptation.
•LLMsforCriticalThinking:HowcanLLMshelpusbreakdownandbuildupcomplextasks?LLMscanhelpustacklecomplextasksbyprovokingcriticalthinking,enablingmicroproductivity,andshiftingthebalanceofskills.
•Human-AICollaboration:HowcanwecollaborateeffectivelywithLLMs?EffectivecollaborationwithLLMsdependsonhowweprompt,complement,relyon,andauditthem.
•LLMsforComplexandCreativeTasks:HowcanLLMstackletasksthatgobeyondsimpleinformationretrievalorgeneration?LLMscansupportcomplexandcreativetasksby,forinstance,enhancingmetacognition.
•Domain-SpecificApplicationsofLLMs:HowareLLMsbeingusedandaffectingdifferentdomainsofwork?Wefocusspecificsonsoftwareengineering,medicine,socialscience,andeducation.
•LLMsforTeamCollaborationandCommunication:HowcanLLMshelpteamsworkandcommunicatebetter?LLMscanhelpteamsimproveinteraction,coordination,andworkflowsbyprovidingreal-time,retrospectivefeedbackandleveragingholisticframeworks.
•KnowledgeManagementandOrganizationalChanges:HowisAIchangingthenatureanddistributionofknowledgeinorganizations?LLMsmight,forinstance,finallyeliminateknowledgesilosinlargecompanies.
•ImplicationsforFutureWorkandSociety:WhatimplicationswillAIhaveforthefutureofworkandsociety?WecanshapeAI’simpactbyaddressingadoptiondisparities,fosteringinnovation,leadinglikescientists,andrememberingthatthefutureofworkisinourcontrol.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
LabexperimentsshowLLMscansubstantiallyimproveproductivityon
commoninformationworktasks,althoughtherearesomequalifiers
LLM-basedtoolscanhelpworkerscompleteavarietyoftasksmorequicklyandincreaseoutputquality.
•StudieshavefoundthatpeoplecompletesimulatedinformationworktasksmuchfasterandwithahigherqualityofoutputwhenusinggenerativeAI-basedtools,
•Peopletook37%lesstimeoncommonwritingtasks(NoyandZhang2023)
•BCGconsultantsproduced>40%higherqualityononesimulatedconsultingproject(Dell’Acquaetal.2023).
•Userswerealso2xfasteratsolvingsimulateddecision-makingproblemswhenusingLLM-basedsearchovertraditionalsearch(Spathariotietal.2023).
•Forsometasks,increasedspeedcancomewithmoderatelylowercorrectness.
•WhentheLLMmademistakes,BCGconsultantswithaccesstothetoolwere19percentagepointsmorelikelytoproduceincorrectsolutions(Dell’Acquaetal.2023).
•Spathariotietal.(2023)developasimpleUX-basedinterventionscanworkwellathelpingpeoplenavigatethesetradeoffs.
•Usersmayneedhelpnegotiatingthetradeoffsinvolvedtomaximizeproductivitygains
•Howtask-levelgainstranslatetojob-levelgainswilldependonwhether
gainsextendtoothertasksandhowthetoolsareintegratedintoworkflows
Qualityofoutput(Treated=usingChatGPT)(Noy&Zhang2023)
Estimatesandconfidenceintervalsforaveragelog(time)bycondition,(Spathariotietal.2023)
Dell’Acqua,F.,etal.(2023).
NavigatingtheJaggedTechnologicalFrontier:FieldExperimentalEvidenceoftheEffectsofAIonKnowledgeWorkerProductivityandQuality
.SSRNWorkingPaper4573321.Noy,S.,&Zhang,W.(2023).
ExperimentalEvidenceontheProductivityEffectsofGenerativeArtificialIntelligence
.SSRNpreprint.
MicrosoftStudy:Spatharioti,S.E.,etal.(2023).
ComparingTraditionalandLLM-basedSearchforConsumerChoice:ARandomizedExperiment
.arXivpreprint.
6
TaskcompletiontimesforlabstudiesofCopilotforM365(Cambonetal2023)
MicrosoftNewFutureofWorkReport
aka.ms/nfw
CopilotforM365savestimeforavarietyoftasksinlabstudiesandsurveys
UsersalsoreportCopilotreducestheeffortrequired.Effectsonqualityaremostlyneutral
Microsoft’sAIandProductivityReportsynthesizesresultsfrom8earlystudies,mostfocusedontheuseofM365Copilot
forinformationworkertasksforwhichLLMsaremostlikelytoprovidesignificantvalue(Cambonetal.,2023).
•Tasksincludedmeetingsummarization,informationretrieval,andcontentcreation
•StudyparticipantswithCopilotcompletedexperimenter-designedtasksin26-73%asmuchtimeasthosewithoutCopilot
•AsurveyofenterpriseuserswithaccesstoCopilotalsoshowedsubstantialperceivedtimesavings
•73%agreedthatCopilothelpedthemcompletetasksfaster,and85%saiditwouldhelpthemgettoagoodfirstdraftfaster.
•Manystudiesfoundnostatisticallysignificantormeaningfuleffectonquality
•However,inthemeetingsummarizationstudywhereCopilotuserstookmuchlesstime,theirsummaries
included11.1outof15specificpiecesofinformationintheassessmentrubricversusthe12.4of15foruserswhodidnothaveaccesstoCopilot.
•Intheotherdirection,thestudyofM365DefenderSecurityCopilotfoundsecuritynoviceswithCopilotwere44%moreaccurateinansweringquestionsaboutthesecurityincidentstheyexamined.
•AstudyoftheOutlook“Soundlikeme”featurefoundCopilotuserslikemanyaspectsoftheemailsitgeneratedmorethanhuman-writtenones,butcouldsometimestellthedifferencebetweenCopilotwritingversushumanwriting.
•OfenterpriseCopilotusers,68%ofrespondentsagreedthatCopilotactuallyimprovedqualityoftheirwork.
•UsersalsoreportedtasksrequiredlesseffortwithCopilot
•IntheTeamsMeetingStudy,participantswithaccesstoCopilotfoundthetasktobe58%lessdrainingthanparticipantswithoutaccess
•AmongenterpriseCopilotusers,72%agreedthatCopilothelpedthemspendlessmentaleffortonmundaneorrepetitivetasks
7
MicrosoftStudy:Cambonetal(2023),
EarlyLLM-basedToolsforEnterpriseInformationWorkersLikelyProvideMeaningfulBooststoProductivity
.MSFTTechnicalReport.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
TheevidencepointstoLLMshelpingtheleastexperiencedthemost
Mostlyearlystudieshavefoundthatneworlow-skilledworkersbenefitthemostfromLLMs.
•InstudyingthestaggeredrolloutofagenerativeAI-basedconversational
assistant,Brynjolfssonetal.(2023)foundthatthetoolhelpednoviceandlow-skilledworkersthemost.
•Theyfoundsuggestiveevidencethatthetoolhelpeddisseminatetacitknowledgethattheexperiencedandhigh-skilledworkersalreadyhad.
•Inalabexperiment,participantswhoscoredpoorlyontheirfirstwritingtask
improvedmorewhengivenaccesstoChatGPTthanthosewithhighscoresontheinitialtask(seegraph,NoyandZhang2023).
•Pengetal.(2023)alsofoundsuggestiveevidencethatGithubCopilotwasmorehelpfultodeveloperswithlessexperience.
•InanexperimentwithBCGemployeescompletingaconsultingtask,thebottom-halfofsubjectsintermsofskillsbenefitedthemost,showinga43%improvementinperformance,comparedtothetophalfwhoseperformanceincreasedby17%(Dell’Acquaetal.,2023).
•RecentworkbyHaslbergeretal.(2023)highlightssomecomplexitiesandnuanceinthesetrends,includingcasesinwhichLLMsmightincreaseperformance
disparities.
GreentrianglesrepresentthosewhogotaccesstoChatGPTforthesecondtask.Theirscoresacrossthetwotasksareless
correlated.(Noy&Zhang2023)
Brynjolfsson,E.,etal.(2023).
GenerativeAIatWork
.NBERWorkingPaper31161.
Haslberger,M.etal.(2023)
NoGreatEqualizer:ExperimentalEvidenceonAIintheUKLaborMarket
.SSRNWorkingPaper4594466,
8
Dell’Acqua,F.,etal.(2023).
NavigatingtheJaggedTechnologicalFrontier:FieldExperimentalEvidenceoftheEffectsofAIonKnowledgeWorkerProductivityandQuality
.SSRNWorkingPaper4573321.Noy,S.,&Zhang,W.(2023).
ExperimentalEvidenceontheProductivityEffectsofGenerativeArtificialIntelligence
.SSRNWorkingPaper4375283.
MicrosoftStudy:Peng,S.,etal.(2023).
TheImpactofAIonDeveloperProductivity:EvidencefromGitHubCopilot
.arXivpreprint2302.06590.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Criticalthinking:LLM-basedtoolscanbeusefulprovocateurs
ReconceptualizingAIsystemsas“provocateurs”inadditionto“assistants”canpromotecriticalthinking
inknowledgework
•AsAIisappliedtomoregenerativetasks,humanworkisshiftingto“criticalintegration”ofAIoutput,requiringexpertiseandjudgement(Sarkar2023).
•Movingbeyondjusterrorcorrection,AIprovocateurswouldchallengeassumptions,encourageevaluation,andoffercounterarguments.
•InteractiondesignofprovocativeAIneedstostrikeabalancebetweenusefulcriticismandoverwhelmingpeople.
•Frameworksthatstructurecriticalthinkingobjectives(e.g.,Bloom’s
taxonomy)andToulmin’smodeloperationalizeargumentanalysis,whichcouldinformprovocativeAIdesign(Kneupper1978).
•Interactivetechnologiesthatsparkdiscussionandengageuserscontributetocriticalthinkingdevelopment(Sunetal.2017;Leeetal.2023).
ImageofBloom’sTaxonomy(Bezjak,S.,etal.2018)
MicrosoftStudy:Sarkar,A.(2023).
ExploringPerspectivesontheImpactofArtificialIntelligenceontheCreativityofKnowledgeWork:BeyondMechanisedPlagiarismandStochasticParrots
ProceedingsoftheACMSymposiumonHuman-ComputerInteractionforWork(CHIWORK2023).
Kneupper,C.W.(1978).Teachingargument:AnintroductiontotheToulminmodel.CollegeCompositionandCommunication29,3..
9
Sun,N.,etal.(2017).Criticalthinkingincollaboration:Talkless,perceivemore.Proceedingsofthe2017CHIConferenceExtendedAbstractsonHumanFactorsinComputingSystems.
Lee,S.,etal.(2023).FosteringYouth’sCriticalThinkingCompetencyAboutAIthroughExhibition.Proceedingsofthe2023CHIConferenceonHumanFactorsinComputingSystems.
Bezjak,S.etal,(2018).
OpenScienceTrainingHandbook
MicrosoftNewFutureofWorkReport
aka.ms/nfw
AIcanenhancemicroproductivitypractices
AIcanbeharnessedtoaugmenthumancapabilitiesthroughnoveltaskmanagementstrategies
•Theconceptof“microproductivity”,inwhichcomplextasksaredecomposedintosmallersubtasksand
performedin“micromoments”bythepersonmostskilledtodoso,canbeenhancedthroughautomation(Teevan2016).
•Forexample,Kokkalisetal.(2013)demonstratedthathighleveltasksbrokenintomultistepactionplansthroughcrowdsourcingresultinpeoplecompletingsignificantlymoretasks(47.1%task
completion)comparedtothecontrolconditionofnoplans(37.8%).ThesebenefitswerescaledbyapplyingNLPalgorithmstoautomaticallycreateactionplansforalargervarietyoftasksbasedonatrainingsetofsimilartasks,andtheplanswerefurtherrefinedthroughhumanintervention.
•Kauretal.(2018)showedthatusingafixedvocabularytobreakdowncommentsinadocumentintoaseriesofsubtasksresultedina28%increaseinsubtasksthatcanbehandedofftocrowdsourcingorautomation,leavingasmallerpercentageofsubtasksleftforthedocumentauthor.
•AIcanhelpwithautomaticidentificationofmicromomentsandmicrotasks,improvingoverallqualityandefficiency.
•Contextualidentificationofmicromomentsbasedonprecedingactivitiesandlocationcanyieldupto80.7%precision(Kangetal.2017);suchmicromomentscanbeusedforlearning(Caietal.2017),
creationofaudiobooks(Kangetal.2017),editingdocuments(Augustetal.2020),andcoding(Williamsetal.2018).
•Whiteetal.(2021)demonstratedhowmachinelearningcanbeleveragedtoautomaticallydetectmicrotasksfromuser-generatedtasklistsresultinginapositiveprecisionof75%,andforecast
duration,withthebestclassifierperformancefortaskswithdurationof5minutes.
Decomposinghighleveltasksintoconcretesteps(plans)makesthemmoreactionableresultinginhighertaskcompletionrates.Online
crowdsdothedecomposition,algorithmsidentifyandreuseexistingplans.(Kokkalis2013)
MicrosoftStudy:Teevan,J.(2016).
Thefutureofmicrowork
.XRDS23,2.
Kokkalis,N.,etal.2013.TaskGenies:
AutomaticallyProvidingActionPlansHelpsPeopleCompleteTasks
.ACMTransactionsonComputer-HumanInteraction20,5.
Kaur,H.etal.2018.
CreatingBetterActionPlansforWritingTasksviaVocabulary-BasedPlanning
.ProceedingsoftheACMonHuman-ComputerInteraction.2,CSCW.
Kang,B.etal.(2017).Zaturi:
WePutTogetherthe25thHourforYou.CreateaBookforYourBaby
.InProceedingsofthe2017ACMConferenceonComputerSupportedCooperativeWorkandSocialComputing(CSCW‘17).Cai,C.J.,Ren,A.,&Miller,R.C.(2017).
WaitSuite:ProductiveUseofDiverseWaitingMoments
.ACMTransactionsonComputerHumanInteraction24,1.
10
MicrosoftStudy:August,T.,etal.(2020).
CharacterizingtheMobileMicrotaskWritingProcess
.22ndInternationalConferenceonHuman-ComputerInteractionwithMobileDevicesandServices(MobileHCI‘20).
MicrosoftStudy:Williams,A.,(2019).
Mercury:EmpoweringProgrammers'MobileWorkPracticeswithMicroproductivity
.Proceedingsofthe32ndAnnualACMSymposiumonUserInterfaceSoftwareandTechnology
MicrosoftStudy:White,R.W.,etal.(2021).
MicrotaskDetection.
ACMTrans.Inf.Syst.39,2.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Analyzingandintegratingmaybecomemoreimportantskillsthansearchingandcreating
WithcontentbeinggeneratedbyAI,knowledgeworkmayshifttowardsmoreanalysisandcriticalintegration
•Informationsearchaswellascontentproduction(manuallytyping,writingcode,designingimages)isgreatlyenhancedbyAI,sogeneralinformationworkmayshifttointegratingandcriticallyanalyzingretrievedinformation
•WritingwithAIisshowntoincreasetheamountoftextproducedaswellastoincreasewritingefficiency(Biermannetal.2022,Leeetal2022)
•Withmoregeneratedtextavailable,theskillsofresearch,
conceptualization,planning,promptingandeditingmaytakeonmore
importanceasLLMsdothefirstroundofproduction(e.g.,Mollick2023).
•Skillsnotdirectlytocontentproduction,suchasleading,dealingwithcriticalsocialsituations,navigatinginterpersonaltrustissues,and
demonstratingemotionalintelligence,mayallbemorevaluedintheworkplace(LinkedIn2023)
Thecriticalintegration“sandwich”:whenAIhandlesproduction,humancritical
thinkingisappliedateitherendoftheprocesstocompleteknowledge
workflows(Sarkar,2023).
Biermann,O.C.,etal.(2022).
FromTooltoCompanion:StorywritersWantAIWriterstoRespectTheirPersonalValuesandWritingStrategies
.Proceedingsofthe2022ACMDesigningInteractiveSystemsConference(DIS'22).Mina,L.,etal.(2022).
CoAuthor:DesigningaHuman-AICollaborativeWritingDatasetforExploringLanguageModelCapabilities
.Proceedingsofthe2022CHIConferenceonHumanFactorsinComputingSystems(CHI'22).
11
Mollick,E.(2023).
MyclassrequiredAI.Here'swhatI'velearnedsofar
.OneUsefulThing
LinkedIn(2023).
FutureofWorkReport:AIatWork
.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Constructingoptimalpromptsisdifficult
Promptsaretheprimaryinterfaceforbothusersanddeveloperstointeractwithlargelanguagemodels,butconsistentlydevelopingeffectivepromptsisachallenge
•PrecisepromptcompositioniscriticalinachievingthedesiredLLMoutput,withsemanticallysimilarpromptsyieldingsignificantlydifferent,sometimesincorrect,outputs(Jiangetal2020).
•Writingeffectivepromptscanrequiresignificanteffort,includingmultipleiterationsofmodificationandtesting(Jiangetal2022).
•Promptbehaviorcanbebrittleandnon-intuitive:
•Seeminglyminorchanges,includingcapitalizationandspacingcanresultindramaticallydifferentLLMoutputs(Holtzman2021,Aroraetal.2023)
•Theorderofpromptelements,suchassections,few-shotexamplesorevenwordscansignificantlyimpactaccuracy,insomecasesvaryingfromnearrandomchancetostate-of-the-art(Zhaoetal.2021,Kaddouretal.2023).
•Thesamepromptcanresultinsignificantlydifferentperformanceacrossmodelfamilies,evenwithmodelsofsimilarparametersize(Sanhetal.2022).
•Whilemanypromptingtechniqueshavebeendeveloped,thereislittletheoreticalunderstandingforwhyanyparticulartechniqueissuitedtoanyparticulartask(Zhaoetal.2021).
•Endusersofprompt-basedapplicationsstrugglemorethanpromptengineerstoformulateeffectiveprompts(Zamfirescu-Pereiraetal.2023).
Jiang,Z.etal.(2020).
HowCanWeKnowWhatLanguageModelsKnow?
TransactionsoftheAssociationforComputationalLinguistics,8.
Jiang,E.etal.(2022).
PromptMaker:Prompt-basedPrototypingwithLargeLanguageModels
.ExtendedAbstractsofthe2022CHIConferenceonHumanFactorsinComputingSystems
Holtzman,A.etal.(2021).SurfaceFormCompetition:WhytheHighestProbabilityAnswerIsn’tAlwaysRight.EMNLP.
Arora,S.etal.(2023).
Askmeanything:Asimplestrategyforpromptinglanguagemodels
.TheEleventhInternationalConferenceonLearningRepresentations.
Zhao,Z.,etal.(2021).
CalibrateBeforeUse:ImprovingFew-shotPerformanceofLanguageModels
.Proceedingsofthe38thInternationalConferenceonMachineLearning.
Kaddour,J.,etal.(2023).
ChallengesandApplicationsofLargeLanguageModels
.arXivpreprint.
12
Sanh,V.etal.(2022)
MultitaskPromptedTrainingEnablesZero-ShotTaskGeneralization
.InternationalConferenceonLearningRepresentations
Zamfirescu-Pereira,J.D.,etal.(2023).
WhyJohnnyCan’tPrompt:HowNon-AIExpertsTry(andFail)toDesignLLMPrompts
.(CHI'23).
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Butconstructingeffectivepromptsisbecomingeasier
Basemodeltraining,toolsandLLMsthemselvesarehelpingimprovepromptperformance
•Significantresearchisdevotedtoimprovingmodelinstructionfollowing.
•Fine-tuningwithhumanfeedbackcandramaticallyimproveLLMsabilitytofollowpromptinstructions,evenwhencomparedtomodelswith100xparameters(Ouyangetal.2022).
•Utilizingmulti-taskandchain-of-thoughttrainingdatasignificantlyimprovedinstruction-followingcapabilities(Chungetal.2022).
•LLMshavebeenshowntobeeffectivepromptoptimizers.
•PromptoptimizationtechniquesthatutilizeanLLMtoiterativelyprovidefeedbackandproducenewversionsofahand-craftedseedpromptcansignificantlyimproveperformance(Pryzantetal.2023).
•Multi-stepoptimizationwithnaturallanguagetaskdescriptionsandscoredoptimizationexamplescaninduceanLLMtogeneratenew,higherperformingpromptvariations(Yangetal.2023).
•Inspiredbyevolutionaryalgorithms,anLLMcanbeusedtogeneratenewpromptcandidatesbymutatingpromptsfromapopulation,evaluatingtheirfitnessagainstatestsetovermultiplegenerations(Fernandoetal.2023).
•Recentworksuggestsoptimizedpromptscanoutperformspecificallyfine-tunedmodelsinanumberofimportantdomains,especiallymedicine(Norietal.2023).
Ouyang,L.,etal.(2022).Traininglanguagemodelstofollowinstructionswithhumanfeedback.AdvancesinNeuralInformationProcessingSystems,35.
Chung,H.W.,etal.(2023)
Scalinginstruction-finetunedlanguagemodels
.arXivpreprint.
Pryzant,R.,etal.(2023).
AutomaticPromptOptimizationwithGradientDescentandBeamSearch
.arXivpreprint.
Yang,C.,etal.(2023).
Largelanguagemodelsasoptimizers
.arXivpreprint.
13
Nori,Harsha,etal.
CanGeneralistFoundationModelsOutcompeteSpecial-PurposeTuning?CaseStudyinMedicine
arXivpreprint.
Fernando,C.,etal.(2023).
Promptbreeder:Self-referentialself-improvementviapromptevolution
.arXivpreprint.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Peoplearealsolearningtopromptmoreeffectively
AspeoplegetbetteratcommunicatingwithLLMs,theyaregettingbetterresults
•Promptguidanceiscommonlyusedasawayforpeopletolearntopromptbetter.
•ResearchsuggeststhattrainingonhowtopromptcanleadtogreaterproductivitygainsfromLLMtools(Dell’Acquaetal.2023).
•Usingalensinformedbythepsycholinguisticconceptofgrounding(Clark1996),Teevan(2023)arguesinHBRthateffectivecommunicationwithgenerativeAIrequiresprovidingcontextualinformation,specifyingthedesiredoutput,andverifyingtheaccuracyofthegeneratedcontent.
•Manyotherguidesandreferencematerialsarealsoavailable,includingarecentWorkLabarticle(Microsoft2023)andOpenAI’sdocumentation
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土豆销售合同格式
- 物流平台服务合同违约
- 汽车美容服务协议
- 工间餐配送服务合同
- 信息服务合同的价格条款
- 个人汽车贷款补充协议
- 进口啤酒品牌代理合同
- 高校安全防护合同
- 农业用肥招标文件解析
- 总分公司合作协议范本版
- 培智五年级上次数学期末考试题
- 旅游2010级酒店规划与设计课程复习思考题
- 窨井抬升施工方案
- 《HSK标准教程3》第10课
- 2023内蒙古财经大学辅导员公开招聘(列编招聘)3人及笔试参考题库(共500题)答案详解版
- 冠心病双联抗血小板治疗中国专家共识
- 人民医院能源托管服务项目可研技术方案书
- 四川省自贡市2022-2023学年八年级上学期期末语文试题
- 部编语文五年级上册词语表注音版
- 中建光伏项目管理指导手册
- 国家开放大学思想道德与法治社会实践作业集合6篇
评论
0/150
提交评论