2024届湖南省长沙市雨花区南雅中学数学高一第二学期期末监测试题含解析_第1页
2024届湖南省长沙市雨花区南雅中学数学高一第二学期期末监测试题含解析_第2页
2024届湖南省长沙市雨花区南雅中学数学高一第二学期期末监测试题含解析_第3页
2024届湖南省长沙市雨花区南雅中学数学高一第二学期期末监测试题含解析_第4页
2024届湖南省长沙市雨花区南雅中学数学高一第二学期期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省长沙市雨花区南雅中学数学高一第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角A、B、C所对的边分别为a、b、c,若a、b、c成等比数列,且,则()A. B. C. D.2.不等式的解集是A.或 B.或C. D.3.等差数列an的公差d<0,且a12=a212,则数列aA.9 B.10 C.10和11 D.11和124.在中,三个内角成等差数列是的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件5.在平面直角坐标系中,圆:,圆:,点,动点,分别在圆和圆上,且,为线段的中点,则的最小值为A.1 B.2 C.3 D.46.记等差数列的前n项和为.若,则()A.7 B.8 C.9 D.107.已知向量,则与().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向8.执行如图所示的程序框图,若输入,则输出()A.13 B.15 C.40 D.469.若,则的最小值为()A. B. C. D.10.公比为2的等比数列{}的各项都是正数,且=16,则=()A.1 B.2 C.4 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.已知x,y满足,则的最大值为________.12.某单位有200名职工,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是13.定义在上的函数,对任意的正整数,都有,且,若对任意的正整数,有,则___________.14.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.15.设在的内部,且,的面积与的面积之比为______.16.如图,曲线上的点与轴的正半轴上的点及原点构成一系列正三角形,,,设正三角形的边长为(记为),.数列的通项公式=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数.(1)求函数的图象的对称轴方程;(2)当时,不等式恒成立,求m的取值范围.18.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司在若干地区各投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元)12345销售收益(单位:万元)2337由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.(参考公式:)19.在平面直角坐标系中,已知点,,.(Ⅰ)求的坐标及;(Ⅱ)当实数为何值时,.20.如图,在平面四边形中,为的角平分线,,,.(1)求;(2)若的面积,求的长.21.已知函数(1)若关于的不等式的解集为,求的值;(2)若对任意恒成立,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

先由a、b、c成等比数列,得到,再由题中条件,结合余弦定理,即可求出结果.【题目详解】解:a、b、c成等比数列,所以,​所以,由余弦定理可知,又,所以.故选A.【题目点拨】本题主要考查解三角形,熟记余弦定理即可,属于常考题型.2、C【解题分析】

把原不等式化简为,即可求解不等式的解集.【题目详解】由不等式即,即,得,则不等式的解集为,故选C.【题目点拨】本题主要考查了一元二次不等式的求解,其中把不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解题分析】

利用等差数列性质得到a11=0,再判断S10【题目详解】等差数列an的公差d<0,且a根据正负关系:S10或S故答案选C【题目点拨】本题考查了等差数列的性质,Sn的最大值,将Sn的最大值转化为4、B【解题分析】

根据充分条件和必要条件的定义结合等差数列的性质进行求解即可.【题目详解】在△ABC中,三个内角成等差数列,可能是A,C,B成等差数列,则A+B=2C,则C=60°,不一定满足反之若B=60°,则A+C=120°=2B,则A、B、C成等差数列,∴三个内角成等差数列是的必要非充分条件,故选:B.【题目点拨】本题主要考查充分条件和必要条件的判断,考查了等差中项的应用,属于基础题.5、A【解题分析】

由得,根据向量的运算和两点间的距离公式,求得点的轨迹方程,再利用点与圆的位置关系,即可求解的最小值,得到答案.【题目详解】设,,,由得,即,由题意可知,MN为Rt△AMB斜边上的中线,所以,则又由,则,可得,化简得,∴点的轨迹是以为圆心、半径等于的圆C3,∵M在圆C3内,∴MN的最小值即是半径减去M到圆心的距离,即,故选A.【题目点拨】本题主要考查了圆的方程及性质的应用,以及点圆的最值问题,其中解答中根据圆的性质,求得点的轨迹方程,再利用点与圆的位置关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.6、D【解题分析】

由可得值,可得可得答案.【题目详解】解:由,可得,所以,从而,故选D.【题目点拨】本题主要考察等差数列的性质及等差数列前n项的和,由得出的值是解题的关键.7、A【解题分析】

通过计算两个向量的数量积,然后再判断两个向量能否写成的形式,这样可以选出正确答案.【题目详解】因为,,所以,而不存在实数,使成立,因此与不共线,故本题选A.【题目点拨】本题考查了两个平面向量垂直的判断,考查了平面向量共线的判断,考查了数学运算能力.8、A【解题分析】

模拟程序运行即可.【题目详解】程序运行循环时,变量值为,不满足;,不满足;,满足,结束循环,输出.故选A.【题目点拨】本题考查程序框图,考查循环结构.解题时可模拟程序运行,观察变量值的变化,判断是否符合循环条件即可.9、D【解题分析】

根据对数运算可求得且,,利用基本不等式可求得最小值.【题目详解】由得:且,(当且仅当时取等号)本题正确选项:【题目点拨】本题考查利用基本不等式求解和的最小值的问题,关键是能够利用对数运算得到积的定值,属于基础题.10、A【解题分析】试题分析:在等比数列中,由知,,故选A.考点:等比数列的性质.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解题分析】

作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【题目详解】由题意,作出不等式组所表示的平面区域,如图所示,因为目标函数,可化为直线,当直线过点A时,此时目标函数在轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.故答案为:6.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.12、1【解题分析】试题分析:因为将全体职工随机按1~200编号,并按编号顺序平均分为40组,由分组可知,抽号的间隔为5,因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为1.考点:系统抽样.点评:本题考查系统抽样,在系统抽样过程中得到的样本号码是最规则的一组编号.13、【解题分析】

根据条件求出的表达式,利用等比数列的定义即可证明为等比数列,即可求出通项公式.【题目详解】令,得,则,,令,得,则,,令,得,即,则,即所以,数列是等比数列,公比,首项.所以,故答案为:【题目点拨】本题主要考查等比数列的判断和证明,综合性较强,考查学生的计算能力,属于难题.14、【解题分析】

利用正弦定理得到,再根据有两解得到,计算得到答案.【题目详解】由正弦定理得:若有两解:故答案为【题目点拨】本题考查了正弦定理,有两解,意在考查学生的计算能力.15、1:3【解题分析】

记,,可得:为的重心,利用比例关系可得:,,,结合:即可得解.【题目详解】记,则则为的重心,如下图由三角形面积公式可得:,,又为的重心,所以,所以所以【题目点拨】本题主要考查了三角形重心的向量结论,还考查了转化能力及三角形面积比例计算,属于难题.16、【解题分析】

先得出直线的方程为,与曲线的方程联立得出的坐标,可得出,并设,根据题中条件找出数列的递推关系式,结合递推关系式选择作差法求出数列的通项公式,即利用求出数列的通项公式。【题目详解】设数列的前项和为,则点的坐标为,易知直线的方程为,与曲线的方程联立,解得,;当时,点、,所以,点,直线的斜率为,则,即,等式两边平方并整理得,可得,以上两式相减得,即,易知,所以,即,所以,数列是等差数列,且首项为,公差也为,因此,.故答案为:。【题目点拨】本题考查数列通项的求解,根据已知条件找出数列的递推关系是解题的关键,在求通项公式时需结合递推公式的结构选择合适的方法求解数列的通项公式,考查分析问题的能力,属于难题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】

(1)首先利用二倍角公式及两角和差的正弦公式化简得到,再根据正弦函数的性质求出函数的对称轴;(2)由,求出的值域,设,则.则当时,不等式恒成立,等价于对于恒成立,则解得即可;【题目详解】解:(1).即令,解得,则图象的对称轴方程为,(2)当时,,则,从而,设,则.当时,不等式恒成立,等价于对于恒成立,则解得.故m的取值范围为.【题目点拨】本题考查两角和与差的正弦公式,考查三角变换与辅助角公式的应用,突出考查正弦函数的性质以及一元二次不等式在给定区间上恒成立问题,属于中档题.18、(1)2;(2)5;(3)空白栏中填5,【解题分析】

(1)根据频率等于小长方形的面积以及频率和为,得到关于的等式,求解出即可;(2)根据各组数据的组中值与频率的乘积之和得到对应的销售收益的平均值;(3)先填写空白栏数据,然后根据所给数据计算出,即可求解出回归直线方程.【题目详解】(1)设各小长方形的宽度为.由频率分布直方图中各小长方形的面积总和为1,可知,解得.故图中各小长方形的宽度为2.(2)由(1)知各小组依次是,其中点分别为对应的频率分别为故可估计平均值为.(3)由(2)可知空白栏中填5.由题意可知,,,根据公式,可求得,.所以所求的回归直线方程为.【题目点拨】本题考查频率分布直方图的实际应用以及回归直线方程的求法,难度一般.(1)频率分布直方图中,小矩形的面积代表该组数据的频率,所有小矩形面积之和为;(2)求解回归直线方程时,先求解出,然后根据回归直线方程过样本点的中心再求解出.19、(Ⅰ),;(Ⅱ)【解题分析】

(Ⅰ)根据点,的坐标即可求出,从而可求出;(Ⅱ)可以求出,根据即可得出,解出即可.【题目详解】(Ⅰ)∵,,∴∴(Ⅱ)∵,∴.∵∴,∴【题目点拨】考查根据点的坐标求向量的坐标的方法,根据向量的坐标求向量长度的方法,以及平行向量的坐标关系.20、(1),(2)【解题分析】

(1)首先根据正弦定理得到,得到,在求即可.(2)首先根据得到,在根据余弦定理即可求出的长.【题目详解】(1)在中,,即.,或(舍去).所以.(2),.在中,由余弦定理知:【题目点拨】本题第一问考查正弦定理,第二问考查余弦定理,同时考查了学生的计算能力,属于中档题.21、(1);(2)【解题分析】

(1)不等式可化为,而解集为,可利用韦达定理或直接代入即可得到答案;(2)法一:讨论和时,分离参数利用均值不等式即可得到取值范围;法二:利用二次函数在上大于等于0恒成立,即可得到取值范围.【题目详解】(1)法一:不等式可化为,其解集为,由根与系数的关系可知,解得,经检验时满足题意.法二:由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论