陇南市重点中学2024届数学高一下期末学业水平测试模拟试题含解析_第1页
陇南市重点中学2024届数学高一下期末学业水平测试模拟试题含解析_第2页
陇南市重点中学2024届数学高一下期末学业水平测试模拟试题含解析_第3页
陇南市重点中学2024届数学高一下期末学业水平测试模拟试题含解析_第4页
陇南市重点中学2024届数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陇南市重点中学2024届数学高一下期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线与圆C相切于点,且圆C的圆心在y轴上,则圆C的标准方程为()A. B.C. D.2.若实数x,y满足条件,则目标函数z=2x-y的最小值()A. B.-1 C.0 D.23.给出下列四个命题:①垂直于同一条直线的两条直线互相平行;②平行于同一条直线的两条直线平行;③若直线满足,则;④若直线,是异面直线,则与,都相交的两条直线是异面直线.其中假命题的个数是()A.1 B.2 C.3 D.44.用辗转相除法,计算56和264的最大公约数是().A.7 B.8 C.9 D.65.已知是球O的球面上四点,面ABC,,则该球的半径为()A. B. C. D.6.三棱锥中,平面且是边长为的等边三角形,则该三棱锥外接球的表面积为()A. B. C. D.7.若不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.8.圆的圆心坐标和半径分别是()A.,2 B.,1 C.,2 D.,19.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,二面角的大小为()A.30° B.45° C.60° D.90°10.设不等式组所表示的平面区域为,在内任取一点,的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数,则__________.12.两等差数列{an}和{bn}前n项和分别为Sn,Tn,且,则=__________.13.数列中,如果存在使得“,且”成立(其中,),则称为的一个“谷值”。若且存在“谷值”则实数的取值范围是__________.14.设直线与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为________15.已知x,y满足,则的最大值为________.16.若满足约束条件则的最大值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,,且.(1)求边长;(2)求边上中线的长.18.等差数列中,,.(1)求通项公式;(2)若,求的最小值.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;20.某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.(1)求图中x的值;(2)求这组数据的平均数和中位数;(3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.21.从高三学生中抽出50名学生参加数学竞赛,由成绩得到如图所示的频率分布直方图.利用频率分布直方图求:(1)这50名学生成绩的众数与中位数;(2)这50名学生的平均成绩.(答案精确到0.1)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

先代入点可得,再根据斜率关系列式可得圆心坐标,然后求出半径,写出标准方程.【题目详解】将切点代入切线方程可得:,解得,设圆心为,所以,解得,所以圆的半径,所以圆的标准方程为.故选:.【题目点拨】本题考查了直线与圆的位置关系,属中档题.2、A【解题分析】

线性规划问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。【题目详解】可行域如图所示,当目标函数平移到A点时z取最小值,故选A【题目点拨】线性规划中线性的目标函数问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。3、B【解题分析】

利用空间直线的位置关系逐一分析判断得解.【题目详解】①为假命题.可举反例,如a,b,c三条直线两两垂直;②平行于同一条直线的两条直线平行,是真命题;③若直线满足,则,是真命题;④是假命题,如图甲所示,c,d与异面直线,交于四个点,此时c,d异面,一定不会平行;当点B在直线上运动(其余三点不动),会出现点A与点B重合的情形,如图乙所示,此时c,d共面且相交.故答案为B【题目点拨】本题主要考查空间直线的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.4、B【解题分析】

根据辗转相除法计算最大公约数.【题目详解】因为所以最大公约数是8,选B.【题目点拨】本题考查辗转相除法,考查基本求解能力.5、D【解题分析】

根据面,,得到三棱锥的三条侧棱两两垂直,以三条侧棱为棱长得到一个长方体,且长方体的各顶点都在该球上,长方体的对角线的长就是该球的直径,从而得到答案。【题目详解】面,三棱锥的三条侧棱,,两两垂直,可以以三条侧棱,,为棱长得到一个长方体,且长方体的各顶点都在该球上,长方体的对角线的长就是该球的直径,即则该球的半径为故答案选D【题目点拨】本题考查三棱锥外接球的半径的求法,本题解题的关键是以三条侧棱为棱长得到一个长方体,三棱锥的外接球,即为该长方体的外接球,利用长方体外接球的直径为长对角线的长,属于基础题。6、C【解题分析】根据已知中底面是边长为的正三角形,,平面,可得此三棱锥外接球,即为以为底面以为高的正三棱柱的外接球

∵是边长为的正三角形,∴的外接圆半径球心到的外接圆圆心的距离故球的半径故三棱锥外接球的表面积故选C.7、B【解题分析】∵不等式对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,∴,∴,∴实数的取值范围是,故选B.8、B【解题分析】

将圆的一般方程配成标准方程,由此求得圆心和半径.【题目详解】由,得,所以圆心为,半径为.【题目点拨】本小题主要考查圆的一般方程化为标准方程,考查圆心和半径的求法,属于基础题.9、D【解题分析】

当平面ACD垂直于平面BCD时体积最大,得到答案.【题目详解】取中点,连接当平面ACD垂直于平面BCD时等号成立.此时二面角为90°故答案选D【题目点拨】本题考查了三棱锥体积的最大值,确定高的值是解题的关键.10、A【解题分析】作出约束条件所表示的平面区域,如图所示,四边形所示,作出直线,由几何概型的概率计算公式知的概率,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据分段函数的解析式先求,再求即可.【题目详解】因为,所以.【题目点拨】本题主要考查了分段函数求值问题,解题的关键是将自变量代入相应范围的解析式中,属于基础题.12、【解题分析】数列{an}和{bn}为等差数列,所以.点睛:等差数列的常考性质:{an}是等差数列,若m+n=p+q,则.13、【解题分析】

求出,,,当,递减,递增,分别讨论,,是否存在“谷值”,注意运用单调性即可.【题目详解】解:当时,有,,当,递减,递增,且.若时,有,则不存在“谷值”;若时,,则不存在“谷值”;若时,①,则不存在"谷值";②,则不存在"谷值";③,存在"谷值"且为.综上所述,的取值范围是故答案为:【题目点拨】本题考查新定义及运用,考查数列的单调性和运用,正确理解新定义是迅速解题的关键,是一道中档题.14、【解题分析】因为圆心坐标与半径分别为,所以圆心到直线的距离,则,解之得,所以圆的面积,应填答案.15、6【解题分析】

作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【题目详解】由题意,作出不等式组所表示的平面区域,如图所示,因为目标函数,可化为直线,当直线过点A时,此时目标函数在轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.故答案为:6.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.16、【解题分析】

作出可行域,根据目标函数的几何意义可知当时,.【题目详解】不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.【题目点拨】线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)利用同角的三角函数关系,可以求出的值,利用三角形内角和定理,二角和的正弦公式可以求出,最后利用正弦定理求出长;(2)利用余弦定理可以求出的长,进而可以求出的长,然后在中,再利用余弦定理求出边上中线的长.【题目详解】(1),,由正弦定理可知中:(2)由余弦定理可知:,是的中点,故,在中,由余弦定理可知:【题目点拨】本题考查了正弦定理、余弦定理、同角的三角函数关系、以及三角形内角和定理,考查了数学运算能力.18、(1);(2)【解题分析】

(1)等差数列中,由,,能求出通项公式.(2)利用等差数列前项和公式得到不等式,即可求出的最小值.【题目详解】解:(1)等差数列中,,.通项公式,即(2),,解得(舍去或,,的最小值为1.【题目点拨】本题考查等差数列的通项公式、项数的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.19、(Ⅰ)0.4;(Ⅱ)20.【解题分析】

(1)首先可以根据频率分布直方图得出样本中分数不小于的频率,然后算出样本中分数小于的频率,最后计算出分数小于的概率;(2)首先计算出样本中分数不小于的频率,然后计算出分数在区间内的人数,最后计算出总体中分数在区间内的人数。【题目详解】(1)根据频率分布直方图可知,样本中分数不小于的频率为,所以样本中分数小于的频率为.所以从总体的名学生中随机抽取一人,其分数小于的概率估计为。(2)根据题意,样本中分数不小于的频率为,分数在区间内的人数为,所以总体中分数在区间内的人数估计为。【题目点拨】遇到频率分布直方图问题时需要注意:在频率分布直方图中,小矩形的高表示频率/组距,而不是频率;利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和。20、(1)0.02(2)平均数77,中位数(3).【解题分析】

(1)由频率分布直方图的性质列方程能求出x.(2)由频率分布直方图能求出这组数据的平均数和中位数.(3)满意度评分值在[50,60)内有5人,其中男生3人,女生2人,记“满意度评分值为[50,60)的人中随机抽取2人进行座谈,2人均为男生”为事件A,利用古典概型能求出2人均为男生的概率.【题目详解】(1)由,解得.(2)这组数据的平均数为.中位数设为m,则,解得.(3)满意度评分值在内有人,其中男生3人,女生2人.记为记“满意度评分值为的人中随机抽取2人进行座谈,2人均为男生”为事件A则总基本事件个数为10个,A包含的基本事件个数为3个,利用古典概型概率公式可知.【题目点拨】本题考查频率平均数、中位数、概率的求法,考查频率分布

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论