版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省西安市高新一中高一数学第二学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的内角的对边分别为,分别根据下列条件解三角形,其中有两解的是()A.B.C.D.2.下列选项正确的是()A.若,则B.若,则C.若,则D.若,则3.下列角位于第三象限的是()A. B. C. D.4.以分别表示等差数列的前项和,若,则的值为A.7 B. C. D.5.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒,则这批米内夹谷约为多少石?A.180 B.160 C.90 D.3606.中国古代的“礼”“乐”“射”“御”“书”“数”合称“六艺”.某校国学社团准备于周六上午9点分别在6个教室开展这六门课程讲座,每位同学只能选择一门课程,则甲乙两人至少有人选择“礼”的概率是()A. B. C. D.7.设是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,,则B.若,,则C.若,,则是异面直线D.若,,,则8.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.9.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为A.; B.C. D.10.在中,,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列{an}满足a1=2,a12.已知函数,有以下结论:①若,则;②在区间上是增函数;③的图象与图象关于轴对称;④设函数,当时,.其中正确的结论为__________.13.如图,在中,,,点D为BC的中点,设,.的值为___________.14.数列满足,,,则数列的通项公式______.15.已知实数满足约束条件,若目标函数仅在点处取得最小值,则的取值范围是__________.16.已知数列是正项数列,是数列的前项和,且满足.若,是数列的前项和,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当,时,求不等式的解集;(2)若,,的最小值为2,求的最小值.18.如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.(1)若点的坐标为,求椭圆的方程及的值;(2)若,求椭圆的离心率的取值范围.19.的内角,,的对边分别为,,,为边上一点,为的角平分线,,.(1)求的值:(2)求面积的最大值.20.已知直线与直线的交点为P,点Q是圆上的动点.(1)求点P的坐标;(2)求直线的斜率的取值范围.21.已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除.【题目详解】A.,由所以不存在这样的三角形.B.,由且所以只有一个角BC.中,同理也只有一个三角形.D.中此时,所以出现两个角符合题意,即存在两个三角形.所以选择D【题目点拨】在直接用正弦定理求另外一角中,求出后,记得一定要去判断是否会出现两个角.2、B【解题分析】
通过逐一判断ABCD选项,得到答案.【题目详解】对于A选项,若,代入,,故A错误;对于C选项,等价于,故C错误;对于D选项,若,则,故D错误,所以答案选B.【题目点拨】本题主要考查不等式的相关性质,难度不大.3、D【解题分析】
根据第三象限角度的范围,结合选项,进行分析选择.【题目详解】第三象限的角度范围是.对A:,是第二象限的角,故不满足题意;对B:是第二象限的角度,故不满足题意;对C:是第二象限的角度,故不满足题意;对D:,是第三象限的角度,满足题意.故选:D.【题目点拨】本题考查角度范围的判断,属基础题.4、B【解题分析】
根据等差数列前n项和的性质,当n为奇数时,,即可把转化为求解.【题目详解】因为数列是等差数列,所以,故,选B.【题目点拨】本题主要考查了等差数列前n项和的性质,属于中档题.5、A【解题分析】
根据数得250粒内夹谷30粒,根据比例,即可求得结论。【题目详解】设批米内夹谷约为x石,则,解得:选A。【题目点拨】此题考查简单随机抽样,根据部分的比重计算整体值。6、D【解题分析】
甲乙两人至少有人选择“礼”的对立事件是甲乙两人都不选择“礼”,求出后者的概率即可【题目详解】由题意,甲和乙不选择“礼”的概率是,且相互独立所以甲乙两人都不选择“礼”的概率是所以甲乙两人至少有人选择“礼”的概率是故选:D【题目点拨】当遇到“至多”“至少”型题目时,一般用间接法求会比较简单,即先求出此事件的对立事件的概率,然后即可得出原事件的概率.7、A【解题分析】
利用线面垂直的判定,线面平行的判定,线线的位置关系及面面平行的性质逐一判断即可.【题目详解】对于A,垂直于同一个平面的两条直线互相平行,故A正确.对于B,若,,则或,故B错误.对于C,若,,则位置关系为平行或相交或异面,故C错误.对于D,若,,,则位置关系为平行或异面,故D错误.故选:A【题目点拨】本题主要考查了线面垂直的性质,线面平行的判定和面面平行的性质,属于简单题.8、D【解题分析】
根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【题目详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【题目点拨】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.9、A【解题分析】
试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.10、D【解题分析】
先根据向量的夹角公式计算出的值,然后再根据同角的三角函数的基本关系即可求解出的值.【题目详解】因为,所以,所以,所以.故选:D.【题目点拨】本题考查坐标形式下向量的夹角计算,难度较易.注意:的夹角并不是,而应是的补角.二、填空题:本大题共6小题,每小题5分,共30分。11、2×【解题分析】
判断数列是等比数列,然后求出通项公式.【题目详解】数列{an}中,a可得数列是等比数列,等比为3,an故答案为:2×3【题目点拨】本题考查等比数列的判断以及通项公式的求法,考查计算能力.12、②③④【解题分析】
首先化简函数解析式,逐一分析选项,得到答案.【题目详解】①当时,函数的周期为,,或,所以①不正确;②时,,所以是增函数,②正确;③函数还可以化简为,所以与关于轴对称,正确;④,当时,,,④正确故选②③④【题目点拨】本题考查了三角函数的化简和三角函数的性质,属于中档题型.13、【解题分析】
在和在中,根据正弦定理,分别表示出.由可得等式,代入已知条件化简即可得解.【题目详解】在中,由正弦定理可得,则在中,由正弦定理可得,则点D为BC的中点,则所以因为,,由诱导公式可知代入上述两式可得所以故答案为:【题目点拨】本题考查了正弦定理的简单应用,属于基础题.14、【解题分析】
由题意得出,利用累加法可求出.【题目详解】数列满足,,,,因此,.故答案为:.【题目点拨】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.15、【解题分析】
利用数形结合,讨论的范围,比较斜率大小,可得结果.【题目详解】如图,当时,,则在点处取最小值,符合当时,令,要在点处取最小值,则当时,要在点处取最小值,则综上所述:故答案为:【题目点拨】本题考查目标函数中含参数的线性规划问题,难点在于寻找斜率之间的关系,属中档题.16、【解题分析】
利用将变为,整理发现数列{}为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【题目详解】当时,符合,当时,符合,【题目点拨】一般公式的使用是将变为,而本题是将变为,给后面的整理带来方便。先求,再求,再求,一切都顺其自然。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)利用零点讨论法解绝对值不等式;(2)利用绝对值三角不等式得到a+b=2,再利用基本不等式求的最小值.【题目详解】(1)当,时,,得或或,解得:,∴不等式的解集为.(2),∴,∴,当且仅当,时取等号.∴的最小值为.【题目点拨】本题主要考查零点讨论法解绝对值不等式,考查绝对值三角不等式和基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1);(2)【解题分析】
(1)把的坐标代入方程得到,结合解出后可得标准方程.求出直线的方程,联立椭圆方程和直线方程后可求的坐标,故可得的值.(2)因,故可用表示的坐标,利用它在椭圆上可得与的关系,化简后可得与离心率的关系,由的范围可得的范围.【题目详解】(1)因为垂直于轴,且点的坐标为,所以,,解得,,所以椭圆的方程为.所以,直线的方程为,将代入椭圆的方程,解得,所以.(2)因为轴,不妨设在轴上方,,.设,因为在椭圆上,所以,解得,即.(方法一)因为,由得,,,解得,,所以.因为点在椭圆上,所以,即,所以,从而.因为,所以.解得,所以椭圆的离心率的取值范围.【题目点拨】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.圆锥曲线中的离心率的计算或范围问题,关键是利用题设条件构建关于的一个等式关系或不等式关系,其中不等式关系的构建需要利用题设中的范围、坐标的范围、几何量的范围或点的位置等.19、(1)(2)3【解题分析】
(1)由,,根据三角形面积公式可知,,再根据角平分线的定义可知,到,的距离相等,所以,即可求出;(2)先根据(1)可得,,由平方关系得,再根据三角形的面积公式,可化简得,然后根据基本不等式即可求出面积的最大值.【题目详解】(1)如图所示:因为,所以.又因为为的角平分线,所以到,的距离相等,所以所以.(2)由(1)及余弦定理得:所以,又因为所以,所以又因为且,故所以,当且仅当即时取等号.所以面积的最大值为.【题目点拨】本题主要考查正余弦定理在解三角形中的应用,三角形面积公式的应用,以及利用基本不等式求最值,意在考查学生的转化能力和数学运算能力,属于中档题.20、(1);(2).【解题分析】
(1)联立方程求解即可;(2)设直线PQ的斜率为,得直线PQ的方程为,由题意,直线PQ与圆有公共点得求解即可【题目详解】(1)由得∴P的坐标为的坐标为.(2)由得∴圆心的坐标为,半径为设直线PQ的斜率为,则直线PQ的方程为由题意可知,直线PQ与圆有公共点即或∴直线PQ的斜率的取值范围为.【题目点拨】本题考查直线交点坐标,考查直线与圆的位置关系,考查运算能力,是基础题21、(1)见解析;(2),.【解题分析】
(1)可通过题意中的以及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年偏三甲苯合作协议书
- 2025年各种气象要素智能传感器合作协议书
- 2025年烧伤整形科手术器械合作协议书
- 2025年私募股权投资合作协议书
- 2025年中外项目委托合同范文(2篇)
- 2025年代理的合作协议(4篇)
- 专题02 平面向量(解析版)
- 考点02常用逻辑用语(3种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版
- 2025年二年级德育工作总结范文下册(五篇)
- 咨询行业居间合作协议模板
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 2022届“一本、二本临界生”动员大会(2023.5)
- 国家行政机关公文格式课件
- 业务员回款考核办法
- 急性心梗的护理业务学习课件
- 2021年投标部工作计划
- 导向标识系统设计(二)课件
- 好书推荐《西游记》共33张幻灯片
- 聚焦:如何推进教育治理体系和治理能力现代化
- 化工仪表自动化【第四章】自动控制仪表
- 2019年安徽省中考数学试卷及答案解析
评论
0/150
提交评论