




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省广州市番禺区禺山高级中学数学高一第二学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则()A. B. C. D.2.在中,,则的形状为()A.直角三角形 B.等腰三角形 C.钝角三角形 D.正三角形3.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=A.6 B.5 C.4 D.34.从装有4个红球和3个白球的袋中任取2个球,那么下列事件中,是对立事件的是()A.至少有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;恰好有2个白球 D.至少有1个白球;都是白球5.已知平面向量,且,则()A. B. C. D.6.已知直线过点,且在纵坐标轴上的截距为横坐标轴上的截距的两倍,则直线的方程为()A. B.C.或 D.或7.将八进制数化成十进制数,其结果为()A. B. C. D.8.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④9.设x,y满足约束条件2x-y+2≥0,8x-y-4≤0,x≥0,y≥0,若目标函数z=abx+y(a,A.2 B.4 C.6 D.810.若a=(3,2),bA.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4)二、填空题:本大题共6小题,每小题5分,共30分。11.设满足约束条件若目标函数的最大值为,则的最小值为_________.12.将正整数按下图方式排列,2019出现在第行第列,则______;12345678910111213141516………13.已知等差数列,若,则______.14.不共线的三个平面向量,,两两所成的角相等,且,,则__________.15.已知直线与相互垂直,且垂足为,则的值为______.16.已知等差数列的前n项和为,若,,,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF平面BEG18.解关于x的不等式19.如图为某区域部分交通线路图,其中直线,直线l与、、都垂直,垂足分别是点A、点B和点C(高速线右侧边缘),直线与、与的距离分别为1米、2千米,点M和点N分别在直线和上,满足,记.(1)若,求AM的长度;(2)记的面积为,求的表达式,并问为何值时,有最小值,并求出最小值;(3)求的取值范围.20.已知向量.(I)当实数为何值时,向量与共线?(II)若向量,且三点共线,求实数的值.21.在中,内角,,所对的边分别为,,.若.(1)求角的度数;(2)当时,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
将指数形式化为对数形式可得,再利用换底公式即可.【题目详解】解:因为,所以,故选:D.【题目点拨】本题考查了指数与对数的互化,重点考查了换底公式,属基础题.2、A【解题分析】
在中,由,变形为,再利用内角和转化为,通过两角和的正弦展开判断.【题目详解】在中,因为,所以,所以,所以,所以,所以直角三角形.故选:A【题目点拨】本题主要考查了利用三角恒等变换判断三角形的形状,还考查了运算求解的能力,属于基础题.3、A【解题分析】
利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果.【题目详解】详解:由已知及正弦定理可得,由余弦定理推论可得,故选A.【题目点拨】本题考查正弦定理及余弦定理推论的应用.4、A【解题分析】
根据对立事件的定义判断.【题目详解】从装有4个红球和3个白球的袋内任取2个球,在A中,“至少有1个白球”与“都是红球”不能同时发生且必有一个事件会发生,是对立事件.在B中,“至少有1个白球”与“至少有1个红球”可以同时发生,不是互斥事件.在C中,“恰好有1个白球”与“恰好有2个白球”是互斥事件,但不是对立事件.在D中,“至少有1个白球”与“都是白球”不是互斥事件.故选:A.5、B【解题分析】试题分析:因为,,且,所以,,故选B.考点:1、平面向量坐标运算;2、平行向量的性质.6、D【解题分析】
根据题意,分直线是否经过原点2种情况讨论,分别求出直线的方程,即可得答案.【题目详解】根据题意,直线分2种情况讨论:①当直线过原点时,又由直线经过点,所求直线方程为,整理为,②当直线不过原点时,设直线的方程为,代入点的坐标得,解得,此时直线的方程为,整理为.故直线的方程为或.故选:D.【题目点拨】本题考查直线的截距式方程,注意分析直线的截距是否为0,属于基础题.7、B【解题分析】
利用进制数化为十进制数的计算公式,,从而得解.【题目详解】由题意,,故选.【题目点拨】本题主要考查八进制数与十进制数之间的转化,熟练掌握进制数与十进制数之间的转化计算公式是解题的关键.8、A【解题分析】
根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【题目详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【题目点拨】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.9、B【解题分析】
画出不等式组对应的平面区域,平移动直线至1,4时z有最大值8,再利用基本不等式可求a+b的最小值.【题目详解】原不等式组表示的平面区域如图中阴影部分所示,当直线z=abx+y(a,b>0)过直线2x-y+2=0与直线8x-y-4=0的交点1,4时,目标函数z=abx+y(a,即ab=4,所以a+b≥2ab=4,当且仅当a=b=2时,等号成立.所以【题目点拨】二元一次不等式组的条件下的二元函数的最值问题,常通过线性规划来求最值,求最值时往往要考二元函数的几何意义,比如3x+4y表示动直线3x+4y-z=0的横截距的三倍,而y+2x-1则表示动点Px,y与10、D【解题分析】
直接利用向量的坐标运算法则化简求解即可.【题目详解】解:向量a=(3,2),b则向量2b-故选D.【题目点拨】本题考查向量的坐标运算,考查计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
试题分析:试题分析:由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.12、128【解题分析】
观察数阵可知:前行一共有个数,且第行的最后一个数为,且第行有个数,由此可推断出所在的位置.【题目详解】因为前行一共有个数,且第行的最后一个数为,又因为,所以在第行,且第45行最后数为,又因为第行有个数,,所以在第列,所以.故答案为:.【题目点拨】本题考查数列在数阵中的应用,着重考查推理能力,难度一般.分析数列在数阵中的应用问题,可从以下点分析问题:观察每一行数据个数与行号关系,同时注意每一行开始的数据或结尾数据,所有行数据的总个数,注意等差数列的求和公式的运用.13、【解题分析】
利用等差数列的通项公式直接求解.【题目详解】设等差数列公差为,由,得,解得.故答案:.【题目点拨】本题考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.14、4【解题分析】
故答案为:4【题目点拨】本题主要考查向量的位置关系,考查向量模的运算的处理方法.由于三个向量两两所成的角相等,故它们两两的夹角为,由于它们的模都是已知的,故它们两两的数量积也可以求出来,对后平方再开方,就可以计算出最后结果.15、【解题分析】
先由两直线垂直,可求出的值,将垂足点代入直线的方程可求出的点,再将垂足点代入直线的方程可求出的值,由此可计算出的值.【题目详解】,,解得,直线的方程为,即,由于点在直线上,,解得,将点的坐标代入直线的方程得,解得,因此,.故答案为:.【题目点拨】本题考查了由两直线垂直求参数,以及由两直线的公共点求参数,考查推理能力与计算能力,属于基础题.16、1【解题分析】
由题意首先求得数列的公差,然后结合通项公式确定m的值即可.【题目详解】根据题意,设等差数列公差为d,则,又由,,则,,则,解可得;故答案为1.【题目点拨】本题考查等差数列的性质,关键是掌握等差数列的通项公式,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解题分析】
(Ⅰ)点F,G,H的位置如图所示(Ⅱ)平面BEG∥平面ACH.证明如下因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG又FG∥EH,FG=EH,所以BC∥EH,BC=EH于是BCEH为平行四边形所以BE∥CH又CH平面ACH,BE平面ACH,所以BE∥平面ACH同理BG∥平面ACH又BE∩BG=B所以平面BEG∥平面ACH(Ⅲ)连接FH因为ABCD-EFGH为正方体,所以DH⊥平面EFGH因为EG平面EFGH,所以DH⊥EG又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD又DF平面BFDH,所以DF⊥EG同理DF⊥BG又EG∩BG=G所以DF⊥平面BEG.考点:本题主要考查简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查空间想象能力、推理论证能力.18、见解析.【解题分析】试题分析:(1)讨论的取值,分为,两种情形,求出对应不等式的解集即可.试题解析:当a=0时,原不等式化为x+10,解得;当时,原不等式化为,解得;综上所述,当a=0时,不等式的解集为,当时,不等式的解集为.点睛:本题考查了含有字母系数的不等式的解法与应用问题,元二次不等式的核心还是求一元二次方程的根,然后在结合图象判定其区间解题时应用分类讨论的思想,是中档题目;常见的讨论形式有:1、对二项式系数进行讨论;2、相对应的方程是否有根进行讨论;3、对应根的大小进行讨论.19、(1);(2),当时,;(3).【解题分析】
(1),,,由即可得解;(2)用含有的式子表示出和,得出,根据的范围得出的最小值;(3)用含有的式子表示出,利用三角恒等变换和正弦函数的值域得出答案.【题目详解】(1)由题意可知:,即,,所以;(2),,,,,,,时,取得最大值1,;(3),由题意可知,令,.【题目点拨】本题考查三角函数的综合应用,考查逻辑思维能力和计算能力,考查对基本知识的掌握,考查分析能力,属于中档题.20、(1)(2)【解题分析】
(1)利用向量的运算法则、共线定理即可得出;(2)利用向量共线定理、平面向量基本定理即可得出.【题目详解】(1)kk(1,0)﹣(2,1)=(k﹣2,﹣1).2(1,0)+2(2,1)=(5,2).∵k与2共线∴2(k﹣2)﹣(﹣1)×5=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025上海市建筑安全员-C证考试(专职安全员)题库及答案
- 深圳技术大学《高分子材料助剂及配方设计》2023-2024学年第二学期期末试卷
- 河南信息统计职业学院《纳税筹划与实务》2023-2024学年第二学期期末试卷
- 2024-2025学年河南省开封市五县联考高二上学期第二次月考(期中)历史试卷
- 山西国际商务职业学院《给排水管道工程》2023-2024学年第二学期期末试卷
- 鹤壁能源化工职业学院《营养与食品卫生学2》2023-2024学年第二学期期末试卷
- 2025青海省建筑安全员-C证(专职安全员)考试题库
- 2025黑龙江省安全员B证考试题库及答案
- 福建卫生职业技术学院《组织胚胎学》2023-2024学年第二学期期末试卷
- 大连财经学院《VisualBasic程序设计》2023-2024学年第二学期期末试卷
- 人教版(2025版)七年级下册英语UNIT 1 Animal Friends 单元整体教学设计(6个课时)
- 项目管理知识手册指南
- 全屋定制家居建议书可行性研究报告备案
- 2025年常熟市招聘进村人员历年高频重点提升(共500题)附带答案详解
- (主城一诊)重庆市2025年高2025届高三学业质量调研抽测 (第一次)物理试卷(含答案)
- 2025年中国电信集团有限公司招聘笔试参考题库含答案解析
- DB50T 393-2011 城市三维建模技术规范
- 《肺癌围手术期护理》课件
- 《糖尿病足护理查房》课件
- 山东省临沂市地图矢量课件模板()
- 2024复工复产安全培训
评论
0/150
提交评论