




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省运城市新绛县第二中学2024届数学高一下期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆的圆心坐标和半径分别为()A. B. C. D.2.已知向量,且,则().A. B.C. D.3.在△中,为边上的中线,为的中点,则A. B.C. D.4.已知圆心在轴上的圆经过,两点,则的方程为()A. B.C. D.5.下列各角中,与角终边相同的角是()A. B. C. D.6.执行如下的程序框图,则输出的是()A. B.C. D.7.在中,分别是角的对边,,则角为()A. B. C. D.或8.已知一组数1,1,2,3,5,8,,21,34,55,按这组数的规律,则应为()A.11 B.12 C.13 D.149.在面积为S的平行四边形ABCD内任取一点P,则三角形PBD的面积大于的概率为()A. B. C. D.10.如图,已知平行四边形,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知两条直线,将圆及其内部划分成三个部分,则的取值范围是_______;若划分成的三个部分中有两部分的面积相等,则的取值有_______种可能.12.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.现从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为.13.已知数列,若对任意正整数都有,则正整数______;14.若正实数满足,则的最大值为__________.15.已知过两点,的直线的倾斜角是,则______.16.已知三棱锥(如图所示),平面,,,,则此三棱锥的外接球的表面积为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,数列满足,其中为的前项和,且(1)求数列和的通项公式(2)求数列的前项和.18.已知点是函数的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足:当时,都有.(1)求c的值;(2)求证:为等差数列,并求出.(3)若数列前n项和为,是否存在实数m,使得对于任意的都有,若存在,求出m的取值范围,若不存在,说明理由.19.如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.(1)若点的坐标为,求椭圆的方程及的值;(2)若,求椭圆的离心率的取值范围.20.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.(1)求线段的长度;(2)若,求两条观光线路与之和的最大值.21.已知数列中,,前项的和为,且满足数列是公差为的等差数列.(1)求数列的通项公式;(2)若恒成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据圆的标准方程形式直接确定出圆心和半径.【题目详解】因为圆的方程为:,所以圆心为,半径,故选:B.【题目点拨】本题考查给定圆的方程判断圆心和半径,难度较易.圆的标准方程为,其中圆心是,半径是.2、D【解题分析】
运用平面向量的加法的几何意义,结合等式,把其中的向量都转化为以为起点的向量的形式,即可求出的表示.【题目详解】,,故本题选D.【题目点拨】本题考查了平面向量加法的几何意义,属于基础题.3、A【解题分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.4、A【解题分析】
由圆心在轴上设出圆心坐标,设出圆的方程,将,两点坐标代入,即可求得圆心坐标和半径,进而得圆的方程.【题目详解】因为圆心在轴上,设圆心坐标为,半径为设圆的方程为因为圆经过,两点代入可得解方程求得所以圆C的方程为故选:A【题目点拨】本题考查了圆的方程求法,关键是求出圆心和半径,属于基础题.5、B【解题分析】
给出具体角度,可以得到终边相同角的表达式.【题目详解】角终边相同的角可以表示为,当时,,所以答案选择B【题目点拨】判断两角是否是终边相同角,即判断是否相差整数倍.6、A【解题分析】
列出每一步算法循环,可得出输出结果的值.【题目详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【题目点拨】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.7、D【解题分析】
由正弦定理,可得,即可求解的大小,得到答案.【题目详解】在中,因为,由正弦定理,可得,又由,且,所以或,故选D.【题目点拨】本题主要考查了正弦定理的应用,其中解答中熟练利用正弦定理,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解题分析】
易得从第三项开始数列的每项都为前两项之和,再求解即可.【题目详解】易得从第三项开始数列的每项都为前两项之和,故.故选:C【题目点拨】该数列为“斐波那契数列”,从第三项开始数列的每项都为前两项之和,属于基础题.9、A【解题分析】
转化条件求出满足要求的P点的范围,求出面积比即可得解.【题目详解】如图,设P到BD距离为h,A到BD距离为H,则,,满足条件的点在和中,所求概率.故选:A.【题目点拨】本题考查了几何概型的概率计算,属于基础题.10、A【解题分析】
根据平面向量的加法运算,即可得到本题答案.【题目详解】由题,得.故选:A【题目点拨】本题主要考查平面向量的加法运算,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】
易知直线过定点,再结合图形求解.【题目详解】依题意得直线过定点,如图:若两直线将圆分成三个部分,则直线必须与圆相交于图中阴影部分.又,所以的取值范围是;当直线位于时,划分成的三个部分中有两部分的面积相等.【题目点拨】本题考查直线和圆的位置关系的应用,直线的斜率,结合图形是此题的关键.12、.【解题分析】试题分析:从中任取3个不同的数,有,,,,,,,,,共10种,其中只有为勾股数,故这3个数构成一组勾股数的概率为.考点:用列举法求随机事件的概率.13、9【解题分析】
分析数列的单调性,以及数列各项的取值正负,得到数列中的最大项,由此即可求解出的值.【题目详解】因为,所以时,,时,,又因为在上递增,在也是递增的,所以,又因为对任意正整数都有,所以.故答案为:.【题目点拨】本题考查数列的单调性以及数列中项的正负判断,难度一般.处理数列单调性或者最值的问题时,可以采取函数的思想来解决问题,但是要注意到数列对应的函数的定义域为.14、【解题分析】
可利用基本不等式求的最大值.【题目详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【题目点拨】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.15、【解题分析】
由两点求斜率公式及斜率等于倾斜角的正切值列式求解.【题目详解】解:由已知可得:,即,则.故答案为.【题目点拨】本题考查直线的斜率,考查直线倾斜角与斜率的关系,是基础题.16、【解题分析】
由于图形特殊,可将图形补成长方体,从而求长方体的外接球表面积即为所求.【题目详解】,,,,平面,将三棱锥补形为如图的长方体,则长方体的对角线,则【题目点拨】本题主要考查外接球的相关计算,将图形补成长方体是解决本题的关键,意在考查学生的划归能力及空间想象能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)由题意可得,由等差数列的通项公式可得;由数列的递推式,结合等比数列的定义和通项公式可得;(2),运用数列的错位相减法求和,结合等比数列的求和公式可得所求和.【题目详解】解:(1)由,同乘以得,可知是以2为公差的等差数列,而,故;又,相减得,,可知是以为公比的等比数列,而,故;(2)因为,,,两式相减得.【题目点拨】本题主要考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,考查化简运算能力,属于中档题.18、(1)1;(2)证明见解析,;(3)存在,.【解题分析】
(1)根据题意可得,再根据等比数列的性质即可求出c(2)根据题意可得,然后求出和(3)利用裂项求和法求出前n项和为,然后就可得出m的范围【题目详解】(1)因为所以,即即前n项和为,所以,因为是等比数列所以有,即解得(2)且数列构成一个首项为1,公差为1的等差数列所以,即
所以(3)因为对于任意的都有所以【题目点拨】常见的数列求和方法有公式法即等差等比数列的求和公式、分组求和法、裂项相消法、错位相减法.19、(1);(2)【解题分析】
(1)把的坐标代入方程得到,结合解出后可得标准方程.求出直线的方程,联立椭圆方程和直线方程后可求的坐标,故可得的值.(2)因,故可用表示的坐标,利用它在椭圆上可得与的关系,化简后可得与离心率的关系,由的范围可得的范围.【题目详解】(1)因为垂直于轴,且点的坐标为,所以,,解得,,所以椭圆的方程为.所以,直线的方程为,将代入椭圆的方程,解得,所以.(2)因为轴,不妨设在轴上方,,.设,因为在椭圆上,所以,解得,即.(方法一)因为,由得,,,解得,,所以.因为点在椭圆上,所以,即,所以,从而.因为,所以.解得,所以椭圆的离心率的取值范围.【题目点拨】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.圆锥曲线中的离心率的计算或范围问题,关键是利用题设条件构建关于的一个等式关系或不等式关系,其中不等式关系的构建需要利用题设中的范围、坐标的范围、几何量的范围或点的位置等.20、(1)3;(2)1.【解题分析】
(1),.用余弦定理,即可求出;(2)设,,用正弦定理求出,,展开,结合辅助角公式可化为,由的取值范围,即可求解.【题目详解】(1)在中,由余弦定理得,,所以线段的长度为3千米.(2)设,因为,所以,在中,由正弦定理得,.所以,,因此,因为,所以.所以当,即时,取到最大值1.答:两条观光线路距离之和的最大值为1千米.【题目点拨】本题考查正、余弦定理解三角形,考查三角恒等变换,尤其是辅助角公式要熟练应用,属于中档题.21、(1);(2).【解题分析】
(1)根据题意求出数列的通项公式,可解出,从而得出数列的通项公式;(2)将数列的通项公式裂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深入分析监理工程师试题及答案
- 企业标准化法管理
- 重大节假日的急救准备工作计划
- 提升战略执行力的年度措施计划
- 家长参与教育的有效方式计划
- 传统中医药的推广计划
- 幼儿园项目化学习的设计计划
- 优化仓库库存补货的个人计划
- 2024年银行考试最有效学习路径试题及答案
- 全面提升陪诊师素养试题及答案
- 前程无忧招聘测评题库及答案
- 2024年黑龙江省哈尔滨市中考化学试卷(附答案)
- JJF 2114-2024 矿用二氧化碳气体检测报警器校准规范
- 2024安全生产法律法规知识培训
- 《健康住宅评价标准》
- DB52T 046-2018 贵州省建筑岩土工程技术规范
- 三叉神经病病例分析
- GB/T 19077-2024粒度分析激光衍射法
- (完整版)减数分裂课件
- GB/T 44481-2024建筑消防设施检测技术规范
- 2024年《武器装备科研生产单位保密资格标准》内容考试试题库及答案
评论
0/150
提交评论