版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WhitePaperAccrual
Modeling
AndAdaptive
Trial
MonitoringWith
IQV
IA
Trial
DesignerIVETA
JANČIGOVÁ,MSc,
PhD,ComputationalScientist,
IQVIAERIC
GROVES,MD,PhD,Vice
PresidentofStrategicDrug
DevelopmentforR&D
Solutions,
IQVIATable
of
contentsAbstract12IntroductionIQVIA
Trial
Designer3Dose-escalation3Adaptive
group-sequential
designsSpendingfunctions44Samplesizere-estimation5AccrualmodellingandtrialmonitoringTechnicalspecifications56Case
study:AdaptivedesignwithaccrualmonitoringSpendingfunction
approachEarly
stoppingforefficacy777Early
stoppingforfutility9Samplesizere-estimation
approachModellingaccrual91010111215151516ScenarioI:
Direct
accrualcalculationvs
simulationresultsScenarioII:
MultiplesitesScenarioIII:
Piece-wise
recruitment
rates-patientaccrualmonitoringScenarioIV:
Piece-wise
hazardrates-events
accrualmonitoringConclusionAcknowledgementsReferencesAbstractAdaptive
clinicaltrialdesignscan
be
used
toaddressthe
issueofeffect
sizenotbeingwelldefined
beforethe
trialfornew
therapeutics.
When
these
types
oftrialdesignsarecombinedwith
modelsandsimulationsfortheaccrualprocess,
it
ispossibletopredict
thedevelopmentofrecruitment
andendpointcollectionandadjust
strategy
based
oninterimanalysisresults.To
showcasethe
group-sequential
moduleandthe
use
ofaccrualsimulations,inthispaperweconsideranexamplewith
adaptivedesignwithtime-to-event
endpointandthe
underlying
issues.The
accrualmoduleincludesanovelapproachtoaccrualsimulationsonvariouslevelsofgranularitythatareuseful
inthe
designphaseaswellasfortrialmonitoringandadaptation.Wedescribe
IQVIA
TrialDesigner(ITD),
amoderncomplexuser-friendlyweb-based
system
thatoffersabroadrangeofsuchdesignoptions,statisticalmodelsandsimulationsthatstatisticians
can
use
forfast
exploration
anddevelopmentofboth
establishedandnoveltrialdesigns.Moreover,ITD
facilitatescollaborationamongmultipleusers
andstreamlinesthe
trialdesignprocess.Atwin
paperDose-findingin
earlyclinicaltrialswithIQVIA
Trial
Designerisalsoavailable.
|
1Introductionbut
still
needed
tocalculatethe
appropriatesamplesize.This
istheminimumsamplesizerequiredtohaveanacceptable(pre-defined)
chanceofachievingstatisticalsignificanceforaproposedstudy.Inaclinicaltrial,the
nullhypothesisstates
(inthesimplestcase)thatthe
treatmentarm
isnodifferentfromthe
controlarm.
The
alternative
hypothesisassumesatreatmentdifferencebetween
thetwo
armsandso
if
therearesufficientdata
toreject
thenullhypothesis,
we
conclude
that
the
treatment
is
effective.Thereareafewapproachesforhowadaptivegroupsequentialtrialdesigns(GSDs)can
addresstheissueofnothavingenoughinformation,i.e.,havingonlyassumptionsandestimates
oftheeffect
size(andothernuisanceparameters),Figure1.Effect
sizeisthe
magnitudeofthealternativehypothesistreatmentdifference.Often,
especiallyfornewtreatments,
it
isnotwelldefined
priortothetrial,Figure1.
Approachestotakewhentheeffect
sizeisnotwelldefinedatthebeginningoftheclinicaltrialConservativeStop
early(DesignalargetrialtoensureStopforefficacynecessarystatisticalpowerwithoptiontostopearlyatIA)forfutilityAgileContinue(Startsmall,ifIAresults
arepromising,performsamplesizereestimationandcontinue)recalculatetheneededsamplesizetoachievethedesiredpowerEnrichmentFocus(StrategicallytargetaspecificsubgroupafterIAreultsare
in)targetaspecificsub-populationthatbenefitsfromtreatment2
|
Accrual
Modeling
And
Adaptive
TrialMonitoring
With
IQVIA
TrialDesignerfromthestart
ofthetrialorthatthe
recruitment
rateisconstant
overtime.These
accrualassumptionsmayimpact
the
statistical
resolutionofvariousdesigns,especiallytime-to-event
designs.•
Conservative:
Start
big,designalargetrialtoensurethe
necessary
statistical
power,but
includeaninterimanalysis(IA)
partway
throughwith
the
optiontostop
early.The
early
stoppingcan
happenforoneoftwo
reasons:Togetherthismeansthatwhilethe
meanrecruitmentperiod
length
andmeantriallength
mightbe
asdesigned,the
actual
accrualscenariomightbesignificantly
differentandmightrequirewaitinglongerforenoughevents
tooccurduetopatientsbeingrecruited
moreslowly
at
the
trialbeginning.Additionally,longeraccrualtimeincreasesthe
durationofobservation
ofpatients
accruedearly
inthe
trial,increasingtheirchancetocontributeevents.»
for
efficacy
-
if
the
results
at
the
interimanalysis
show
statistically
significant
benefitsto
the
patients17»
forfutility
-if
the
results
at
theinterimanalysisdonotshowsufficientdifferencebetween
thetreatmentandthe
controlarm
(orif
toomanyadverse
effects
areobserved)5•
Agile:Start
small,designatrialthatwouldnothavesufficientstatistical
powertodemonstrate
theeffect,but
includeaninterimanalysis
partway
through.Ifthe
IA
results
arepromising,perform
samplesizere-estimation
todeterminethe
needed
samplesizetoachievethedesiredpowerwith
theupdatedknowledge
ofthe
effect
sizeandcontinuethetrialInthispaperwedescribeIQVIA
TrialDesignerandfocusonthe
groupsequentialmoduleandaccrualmodelingtodemonstrate
someofthe
challengesofadaptivedesignandaccrualandhowmodelingandsimulationscan
helpovercomethem.IQVIA
Trial
Designer•
Enrichment:Ifit
isdeterminedat
theinterimanalysisthatthe
effect
sizeissmall,but
thesubjectsthatrespondedtothetreatmentsharecertaincharacteristics,
thismaybe
because
thetreatmentisappropriateonly
forasub-population,
perhapsaspecific
variantofthedisease.Insuchcase
it
isreasonabletorecruit
morepatients
fromthissub-population,i.e.,enrichthesample.MachinelearningtoolssuchasSOMS
(SubpopulationOptimizationandModellingSolutions)10
can
be
used
toidentify
thecommoncharacteristics
byprocessingtheavailabledata
from
the
first
stage
ofthetrialIQVIA
Trial
Designer
(ITD)
is
a
modern
complex
user-11friendly
web-based
system
that
offers
a
broad
range
ofdesign
options,
statistical
models
and
simulations
thatstatisticians
can
use
for
fast
exploration
and
developmentof
novel
trial
designs.
Additionally,
it
is
set
up
to
facilitatecollaboration
among
multiple
users/stakeholders.
Ourcompetitors
include
nQuery
and
East
.
In
the
following,204we
briefly
describe
ITD
capabilities.Dose-escalationWithin
ITD,
the
availabledose-escalation
methodsinclude3+3
(asaspecialcase
ofm+n),i3+3,BOIN,andmTPI-2forfindingthe
maximumtolerateddose.Forfindingthe
recommendedphaseII
dosewhen
lookingat
both
toxicity
andefficacy
thereisPRINTE
andincustom
sessionBOIN-based
simpletwo-parametermethod.
Moredetails
about
these
methods,
theircomparisonand
a
case
study
that
highlights
thechallengesand
needforsimulations
indose-findingisavailable
in
a
twinpaperDose-
indinginearlyclinicalInallthese
approaches,data
aregatheredovertime,andstatistical
comparisonsandsubsequentinformeddecisionsaremadewhen
only
portions
ofthe
datahavebeen
collected.
This
flexibility
isoneofthemainadvantages
ofGSDs
overfixeddesigns.However,therearestill
factors
thatarefixedinthese
adaptivedesignsthatmaymakethedesignsinconsistentwithoperationalreality.trialswith
IQVIATrialDesigner
.13For
example,the
GSDpackagemaymakeincorrectassumptionsabout
the
accrualrate.One
mightassumethatallrecruitment
sitesareenrollingpatients
right
|
3Adaptive
group-sequential
designsthe
interimanalyses
andat
finalstage,
i.e.,whetherlargeramountof
(β)shouldbe
spentat
early
interimanalyses
orat
finalstage.
The
differenttypes
ofspendingfunctions
supported
inthe
applicationare:Inthe
groupsequentialmoduleinITD,
theusercanselect
fromboth
fixedandadaptivedesignswithendpoints:•
Lan-DeMets
approximationtoO’Brien-Flemingfunction
(OF)15•
differenceinmeans-forcontinuousvariables,e.g.,blood
pressure,insulinlevels,
etc.•
Lan-DeMets
approximationtoPocockfunction
(PK)15•
Hwang-Shih-DeCani
Gammafunction
family(HS)9•
Haybittle-Peto
boundaries(HP)8•
binomialproportions
(rawdifference,odds
ratio,relative
risk)-forbinary
variables,e.g.,proportion
ofpeoplewho
gotinfected,
arefree
ofseizures,etc.•
time-to-event
-forwaitinguntilcertain
eventhappens,e.g.,survival
analysisinoncology,asthmaattacks,
etc.•
piece-wise
linear
user-specified
spending
function
(US)Itmaybe
appropriatetoconsiderdifferentspendingfunctions
forefficacy
andforfutility.
As
trialdesigners,weshouldbe
conservative
about
stoppingearlyforefficacy,
sincewewanttobe
convincedthatthetreatmentindeedworks,
but
wemaybe
morewillingtoacceptanerrorwhen
consideringstoppingthetrialforfutility.There
are
options
to
demonstrate
superiority,
non-inferiority
or
equivalence
of
the
compared
treatments.The
user
can
also
select
if
they
want
to
test
a
one-sidedhypothesis
(to
demonstrate
treatment
over
placebo),two-sided
hypothesis
(when
comparing
two
treatments)or
one-sided
efficacy
with
non-binding
futility.Another
reasontouse
conservative
spendingfunctioniswhen
the
only
purpose
oftheinterimanalysisistore-estimate
the
samplesize,but
nottostop
early.Insuchcase,
wewantonly
avery
smallportion
oftype
Ierrortobe
spentat
the
interimanalysisandleavemostofit
availableforthe
finalanalysis.For
the
situation
with
a
binomial
proportions
endpointand
asingle
treatment
arm,
there
is
also
a
simplegroup
sequential
design
with
two
stages
—
Simon’sdesign
—
available
inthe
custom
module.
This
design19minimizesthe
sample
sizeand
uses
a
single
interimanalysis
todetermine
whether
the
trial
should
bestopped
for
futility
or
continue
tothe
second
stage.Simon
Two
stage
designs
are
common
in
phase
Ibbasket
oncology
studies.•
The
OF
function
spendsvery
little
early
andkeepsmoreforthe
finallook.
Itmightbe
moresuitable
forearly
terminationtoreject
H
infavorofH
(efficacy)01because
it
reducestheprobability
ofanunfortunatesituationthatcouldpotentiallyhappeninagroupsequentialtrialwhen
onewouldget
aneffect
sizeatthe
endofthestudy
thatwouldbe
significantif
thiswasafixeddesignbut
it
isnotbecause
oftheerrorspendingat
the
interimanalysis.
The
boundariesspecified
bythe
OF
function
decreasewith
thenumberoflooks.SPENDINGFUNCTIONSFor
allendpoints,
the
ITD
groupsequentialmoduleoffers
amultipleinterimanalyses
feature,but
theuserneeds
tobe
awarethatrepeatedhypothesis
testingingroupsequentialdesigns(onceat
eachinterimanalysis)ofaccumulateddata
increasesthe
type
Ierrorrate.Therefore,efficacy
boundary
points
arechoseninadvanceusingspendingfunctions
thatensurethatthe
overallsignificanceleveldoes
notexceedthepre-specified
significancelevel
.•
The
PKfunction
isless
conservative
with
the
earlyspending,moresuitable
forearly
terminationwhenwearenotrejecting
H
(futility)
andmoreefficient0Usingdifferentspendingfunctions,
theusercanspecify
how
(andtype
II
errorrateβincase
ofconsideringstoppingforfutility)
isspentat
eachofoverawider
set
ofsituations.The
boundariesinthiscase
stay
almost
constant.4
|
Accrual
Modeling
And
Adaptive
TrialMonitoring
With
IQVIA
TrialDesigner•
The
familyofHS
functions
parameterizedbyaparameterγallowsforspendingfunctions
thatareless
conservative
thanOF
but
notasaggressiveasPK.
The
morenegative
thevaluesofγarethemoreconservative
spendingfunctions
they
yield,
with
γ=−4
resemblingthe
OF
function;
γ=0spendsthetype
Ierrorlinearlyandγ=1producesaspendingfunction
similartoPK.»
isonly
used
at
the
penultimatelook»
conventionalWaldstatistic
maythenbe
usedwithout
inflatingthe
type
Ierrorif
theconditionalpowerat
the
interimisabove50%•
Cui-Hung-Wang(CHW)
method3»can
be
implementedat
anylooktocontrol
inflation,thismethod
weighsthe•
HPboundariesareafamilyofp-value
boundariesoften
used
forblind-breaking
samplesizere-estimation.
These
boundariespre-specify
asmall(same)p-value
asthestoppingcriterion
at
theinterimanalyses.
The
finalp-value
forevaluatingstatistical
significanceat
thelast
lookisthencalculatedinsuchawaythattheoveralltype
Ierroristhepre-specified
.»independentWaldstatistics
obtained
at
eachlooktodeterminethe
statistical
significancewith
pre-specified
weights.
Havingdifferentsets
ofpatientsweighteddifferently
issometimescontroversialamonginvestigators
notfamiliarwith
the
technicaldetails
ofadaptivemethodology
andissometimesthe
reasonwhy
the
CDLapproachispreferredoverCHW•
An
ITD
usercan
alsospecify
theirown
spendingfunction
bydefiningtheamountof
tobe
spentatvarioustimepoints.
These
valuesarethenlinearlyinterpolatedtoobtain
thespendingfunction
thatcanthenbe
used
when
trying
toreplicateand/ormodifyapreviously
publishedspendingfunction,
e.g.,atruncated
OF.InITD,
both
ofthese
methods
only
recommendincreasesinsample
size(if
needed),
notdecreases—thisisinaccordancewith
the
USFood
andDrugAdministrationguidanceonadaptive
design
.6Accrual
modelling
and
trial
monitoringITD
offers
the
accrual
module
to
model
and
simulatethe
recruitment
period
and
also
monitor
the
accrualprogress
of
the
trial.
The
group
sequential
designmodule
and
the
accrual
simulations
give
the
sameresults
on
average,
but
the
accrual
module
offers
greaterinsight
into
various
options
that
do
not
fit
the
standardgroup
sequential
design.
These
insights
potentially
canbe
used
to
modify
the
design
assumptions.The
spending
functions
specify
the
nominal
critical
pointsz
and
corresponding
nominal
p-values
1
—
Φ(z)
(in
one-sided
case)
which
if
crossed,
justify
the
early
termination.SAMPLE
SIZE
RE-ESTIMATIONTo
address
the
issue
of
not
having
enough
informationabout
the
effect
size
when
performing
the
initial
samplesize
calculation
for
the
trial,
the
ITD
system
enablesboth
blind-breaking
and
blind-preserving
sample
sizere-estimation.
The
blind-preserving
approach
uses
aFor
example,
some
sites
may
not
be
ready
to
openat
trial
start
and
open
later
so
that
the
recruitmentrate
ramps
up
gradually,
which
means
longer
wait
toobserve
the
needed
number
of
events.
These
types
ofconclusions
can
then
be
added
back
into
the
trial
design.so-called
internal
pilot
study
that
typically
updates7the
information
about
variance.
The
blind-breakingapproach
is
available
using
two
methods:ITD
can
helpanswer
the
questions
forhowtostructureaccrualtoassurethatthe
trialwillhaveenoughobserved
events.
This
mayinvolveplanningtoopenmoresites,
oralternatively
toplantoextend
thedurationofobservation
forlongertimethancalculatedfrom
theoriginalGS
design.•
Chen-DeMets-Lan
method
(CDL)2,16»
alsoknown
asthe
PromisingZoneapproach»
calculatesconditionalpower—the
probability
thatwewouldexpect
tofindsignificantp-value
at
thefinallookgiven
what
happenedso
far
|
5The
accrualmodelingforGSDs
isanextension
oftheTechnical
specificationsAnisimovapproach.Itallowsthe
usertospecify
the1ITD
isauser-friendlyweb-based
system
relying
onthe
react,
Node.js,nexosandDockertechnologiesforsecureandresponsivedesignandthe
terraforminfrastructure
forcontinuousdeployment.
The
designismodular,flexible
andsupports
integrationofnew
algorithms.
These
aretypically
first
tested
inacustom
module,whichcontainsasimpleintegrateddevelopmentenvironment.groupsofsitesandnumberofsitesineachgroup(thegroupscan
havesizeone,thusallowingmodelingonthe
levelofindividual
sites)andtheiropening/closingcharacteristics
andrecruitment
parameters.The
usercan
alsospecify
non-uniform
recruitmentratesoverseveralrecruitment
periods
andforthetime-to-event
endpointalsopiece-wise
hazardrates.Both
piece-wise
recruitment
ratesandpiece-wisehazardratescan
vary
acrossthe
groupsofsites.The
statistical
methods
and
algorithms
areimplemented
in
R18
using
available
open-source
librarieswhere
applicable.
The
calculations
and
simulationsare
performed
using
Amazon
Web
Services
and
theapplication
can
support
10,000
concurrent
requests.6
|
Accrual
Modeling
And
Adaptive
TrialMonitoring
With
IQVIA
TrialDesignerCasestudy:
Adaptivedesignwithaccrual
monitoringthe
trial.Inthisagilecase,
smallerfunds
areneededupfront,
however,the
sponsorneeds
tobe
preparedtomakeareal-time
commitmentforadditionalresourcesonthe
recommendationofDMC
forthe
study
tocontinue.Fromthispointofview,samplesizere-estimation
ismoreflexible
thanthe
errorspendingapproach.The
maingoalofstatistical
analysisofclinicaltrialdataistogeneralizefrom
thesamplepopulationtothewhole
population.This
generalizationismorelikelytobe
accurateif
the
samplesizeislarge,howeverinpractice
therearefinancialandtimeconstraintslimitingthe
samplesize.Also,
thereareethicalconsiderations,i.e.,wedonotwanttounnecessarilyexpose
peopletotreatmentthatmightproveharmfulorineffective,
thereforethegoalistohavejustsufficientsamplesize.However,havingtheminimalsamplesizenecessary
reliesontheassumptionsaboutthe
effect
size.Traditionally,stoppingforfutility
hasbeen
morecommonlyused
(i.e.,futility-only
designs),butstoppingforearly
efficacy
isextremely
valuablewhen
appropriatelyused.
Also
notethatsometimesanon-binding
futility
boundisused,
e.g.,sponsormightwanttocontinuethe
trialanyway
forsafetyrecommendationsevenif
thefutility
boundaryiscrossed.Adaptive
trials
can
makecourse-corrections
basedon
all
the
information
as
it
becomes
available
in
thetrial.
As
a
result,
adaptive
trials
can
makebetter
useof
resources
and
allow
early
stopping
if
the
results
areeither
very
promising
or
unpromising.
The
two
differentapproaches
(conservative
vs
agile)
to
handling
theuncertainty
in
the
actual
value
of
the
effect
size
beforethe
trial
require
two
different
management
strategies.Spending
function
approachInthissection
wedemonstrate
the
valueofanIA
bystoppingforefficacy
andstoppingforfutility.EARLYSTOPPINGFOREFFICACYConsider
a
phase
III
study
with
the
overall
survival(time-to-event)
endpoint
with
the
true
but
unknownhazard
ratio
HR
=
0.64.
First,
we
consider
a
conservativeTscenario,
in
which
the
hazard
ratio
under
the
alternativeIn
the
conservative
scenario,
when
one
wants
tobe
able
todetect
the
minimalclinically
relevanttherapeutic
effect,
the
resulting
sample
sizecan
be
verylarge.
The
study
might
be
overpowered
if
the
actualeffect
is
higher.The
sponsor
needs
toallocate
andreserve
significant
funds
and
operational
resourcesinadvance
toprepare
for
a
study
with
a
large
samplesize.However,if
it
becomes
clear
during
the
interimanalysis
that
the
effect
is
not
there,
the
study
maybeterminated
early.hypothesis
is
H
:
HR
=
0.7and
one
interim
analysis
isplanned
when
50%
of
events
are
observed.
The
inputparameters
are
summarized
in
Table
1.1As
analternative
(agile)approach,if
thesponsorisunableorunwillingtomakealargesamplesizecommitmentup-front
based
onthelimitedpriordata
availableonthe
new
compound,anexpected(optimistic)effect
can
be
used
forthe
calculationofthe
samplesize.This
results
inasmallerstudy
with
theexpectation
ofsamplesizere-estimation
at
theinterimanalysis.
An
independentdata
monitoringcommittee(DMC)
willbe
reviewing
theblindbreakingorblindpreserving
interimdata
at
thepre-specified
pointof
|
7Table
1.
Inputparametersforadaptivedesignwithoneinterimanalysis.PARAMETER
NAMEVALUEendpointhazard
ratio
under
H0hazard
ratio
under
H1type
Ierror
(
)time-to-event
(overallsurvival)10.70.025power
(1
−β)0.9proportion
of
events
at
interim
analysisrandomization
ratioupper
(
)spending0.51OF/PKmedian
survival
timemedian
censoring
timeminimumfollow-up
durationtrial
duration12
months
(controlgroup),14
months
(overall)240
months12
months24
monthsThe
samplesizesforfixedandadaptivedesignsarecontinueuntilthe
finallookrequiresmoresubjects
andmoreevents.
This
isthetrade-off
tobe
madeforthepossibility
thatthe
trialmayendearly.calculatedusingthe
methodologiesdescribed
in
.The14results
aresummarizedinTables2and3.
Wesee
thatcomparedtoafixeddesign,aGS
designthatneeds
toTable
2.
SamplesizeandneedednumberofeventsassumingHR=0.7.TRIAL
DURATION#SUBJECTS#EVENTS(MONTHS)GS
design,
at
finallook,
OFGS
design,
at
finallook,
PKFixed
design2459065258733236733024248
|
Accrual
Modeling
And
Adaptive
TrialMonitoring
With
IQVIA
TrialDesignerTable3.
Group
sequential
design
with
one
interimanalysis
using
a
conservative
spending
function
(Lan-DeMetsapproximation
to
O’Brien-Fleming)
and
anaggressive
spending
function
(Lan-DeMets
approximation
to
Pocock).O'BRIEN-FLEMING
SPENDINGPOCOCK
SPENDINGLOOKPROP.(IF)TIME##NOM.PVALUE##EVENTSNOM.PVALUE(MONTHS)SUBJECTSEVENTSSUBJECTS10.5113.2245905901660.00150.02456521840.0155Final3326523670.0139In
case
of
the
OF
spending
function,
the
difference
isin
these
n
patients,
the
study
is
stopped.
Otherwise,1small
(590
vs
587
subjects
and
332
vs
330
events)
but
itis
very
unlikely
that
the
trial
would
stop
for
efficacy
atthe
interim
analysis
at
13.2months
because
the
nominalprobability
is
very
small
p
=
0.0015(z-score
2.96).n
−
n
additional
patients
are
accrued
for
a
total
of1n.
The
nullhypothesis
is
rejected
if
r
+1
or
more2responses
are
observed
inn.
This
design
yields
a
pre-specified
type
I
error
rate
and
pre-specified
powerwhen
the
true
response
rate
is
p.1Incase
ofthe
PKspendingfunction,
thedifferenceislarger(652vs
587
subjects
and367vs
330
events),but
thepossibility
ofstoppingearly
ismuchmorelikely,sincetheinterimresults
willbe
evaluatedat
asignificancelevel0.0155,i.e.,z-score2.157.As
an
alternative
approach,
if
we
wanted
to
have
acontrol
over
the
type
II
error
spending,
possibly
overmore
than
one
interim
analysis,
we
can
consider
adesign
with
Haybittle-Peto
boundary
for
efficacy
withvery
small
p-value
(e.g.,p
=
0.000001,
so
virtually
noinflation
at
the
final
analysis)
and
PKfunction
to
controlthe
β
spending.
With
HR
=
0.7we
get
the
z
boundaryvalue
for
futility
0.92which
corresponds
to
0.062
type
IIerror
spent
(outof
0.1)
at
the
interim
analysis.
Note
thatin
this
case,
the
needed
number
of
events
is
190at
thetime
of
interim
(and
380
at
the
time
of
final
analysis).Wedo
not
expect
stopping
for
efficacy,
but
we
have
theoption
to
stop
for
futility.EARLYSTOPPINGFORFUTILITYStopping
early
for
futility
is
of
interest
especially
inphase
II
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年隆平米业高科技股份有限公司招聘备考题库及参考答案详解1套
- 2026年梅州市工业和备考题库化局公开招聘劳务派遣人员备考题库及参考答案详解
- 2026吉林富维股份内部招聘16人笔试备考试题及答案解析
- 2026年甘肃省酒泉市体育中心招聘笔试备考题库及答案解析
- 快乐成长资料
- 2026广东佛山市顺德区西山小学高新区学校招聘语文临聘教师笔试参考题库及答案解析
- 2026年淄博南部生态产业新城发展中心教育系统公开招聘工作人员(8人)笔试备考试题及答案解析
- 2026年泉州市部分公办学校公开招聘编制内博士研究生学历学位教师备考题库附答案详解
- 2026年西北工业大学管理学院智慧民航运维管理创新团队招聘备考题库及一套完整答案详解
- 2025年12月南昌公交运输集团对外招聘17人笔试模拟试题及答案解析
- 2023年个税工资表
- 劳动者个人职业健康监护档案
- 2023新青年新机遇新职业发展趋势白皮书-人民数据研究院
- 《两角和与差的正弦、余弦、正切公式》示范公开课教学PPT课件【高中数学人教版】
- 管理学原理教材-大学适用
- 变电站一次侧设备温度在线监测系统设计
- GB/T 6579-2007实验室玻璃仪器热冲击和热冲击强度试验方法
- GB/T 26389-2011衡器产品型号编制方法
- GB/T 16913.3-1997粉尘物性试验方法第3部分:堆积密度的测定自然堆积法
- GB/T 12621-2008管法兰用垫片应力松弛试验方法
- 重庆大学介绍课件
评论
0/150
提交评论