




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一局部集合、映射、函数、导数
概念表示方法元素、集合之间的关系
集合
映射定义
_(换元法求解析式)
三要素
注意应用函数的单调性求值域]
,、函数在某个区间递增(或减)与单调区间是某个区间的含义不同;、
W、证明单调性:作差(商)、导数法;3、复合函数的单调性,
定义域关于原点对称,在x=0处有定义的奇函数一/(0)=0
性质
周期为T的奇函数一/(今=/($=/(0)=0
函数
二次函数、根本不等式、打钩(耐克)函
数、三角函数有界性、数形结合、导数.
平移变换)
对称变换)
图象及其变换
翻折变换)
伸缩变换)
根本初等函数
分段函数.三角函数
—(复合函数的单调性;同增赢f)
复合函数
抽象函数(赋值法、典型的函数)
函数与方程零点I―(二分法、图象法、二次及三次方程根的分布]
导数
第二局部三角函数与平面向量
弧长公式、扇形面积公式)
角的概念弧度制
任意角的三角函数的定义三角函数线
同角三角函数的关系
三角函数_(公式的变形、逆用、"1”的替薪)
诱导公式
和角、差角公式化简、求值、证明(恒等变形)
二倍角公式
定义域值域T图象
正弦函数>=sinx奇偶性
,对称轴(正切函数除外、
单调性
---余弦函数y=cosx经过函数图象的最高[或
三角函数
低)点且垂直x轴的直线,
的图象周期性
―I正切函数丫=^11X对称中心是正余弦函数图
对称性象的零点,正切函数的对
k元
----y=Asin(<ur+0)+。忑中心为Cy,0)
最值
6)图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同】
②图象也可以用五点作图法;③用整体代换求单调区间(注意。的符号);
A/z一(P
④最小正周期T=蔷:⑤对称轴x=>+;}一空对称中心为(',b)(jtez).
co
概念模|"|=、(X2-XlA+G?—)'1)2
线性运算-力口、减、数乘一几何意义
根本定理
平面向量方在方方向上的投影为花|cos8=a,b
坐标衣小1«1
几何意义一投影
数量积
夹角公式
设方与石夹角a那么cosR4・b_
共线(平行)|a|«IM
,共线与垂直卜
垂直~(一〃方=方=22oxi”—X2yi=0)
-(解的个数的讨论)
正弦定理二-L方<=>方•3=0=*阳+”>?=0)
余弦定理
解三角形
面积=^ah=^abs\nC=yjp(p—a)(p—b)(p—c)(其中p=:a+b+c
2
实际应用取列T个守队
—(数列是特殊的函数)
解析法:an=f(/?)
概念表示图象法
一(等差数列与等比数列的类口)
——通项公式列表法
递推公式(a〃=m+(〃—l)da=a\qn
通项公式n
数列
T等差数列
'值和公TV(hu=+/7ri“=〃rW7r
第四局部解析几何
第五局部立体几何
f
长对
柱体正
平
高
齐
相
宽
等
空间几何体
点在面内
一点与面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国家中小学智慧教育平台应用指南
- 2025年晋中货运从业资格证考题
- 2025财经学院政府协议采购合同
- 2025年份1月CART疗法研发借款协议细胞存活率担保
- 出资额转让协议股权转让协议
- 集电线路巡视主要内容及要求
- 二零二五版整体转让深圳证券私募基金管理人
- 二零二五版最高额抵押借款合同范例
- 门店地面物料管理制度
- 财务专项资金管理制度
- 餐饮部作业流程图
- 代建项目管理手册
- WS/T 510-2016病区医院感染管理规范
- GB/T 15065-2009电线电缆用黑色聚乙烯塑料
- 与圆有关的最值问题课件
- 中层干部任期考核民主测评表
- 十二经络及腧穴课件
- 办公室工作存在问题(总结12篇)
- 精细化工产品公司企业经营战略方案
- 住宅改为经营性用房证明(参考样本)
- GCP相关人员职责
评论
0/150
提交评论