




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市宣威民族中学2024届数学高一下期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某班现有60名学生,随机编号为0,1,2,…,59.依编号顺序平均分成10组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,若在第1组中随机抽取的号码为5,则在第7组中随机抽取的号码为()A.41 B.42 C.43 D.442.在△ABC中,角所对的边分别为,且则最大角为()A. B. C. D.3.已知角的终边经过点(3,-4),则的值为()A. B. C. D.4.过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y等于()A.1 B.5 C.-1 D.-55.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面6.直线与圆相交于两点,则弦长()A. B.C. D.7.设△ABC的内角A,B,C所对的边长分别为a,b,c,且,则的最大值为()A. B.1 C. D.8.已知函数,则下列说法正确的是()A.图像的对称中心是B.在定义域内是增函数C.是奇函数D.图像的对称轴是9.在等差数列中,,则等于()A.2 B.18 C.4 D.910.下列关于四棱柱的说法:①四条侧棱互相平行且相等;②两对相对的侧面互相平行;③侧棱必与底面垂直;④侧面垂直于底面.其中正确结论的个数为()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列,,若该数列是减数列,则实数的取值范围是__________.12.设满足约束条件若目标函数的最大值为,则的最小值为_________.13.中,三边所对的角分别为,若,则角______.14.已知等比数列的公比为2,前n项和为,则=______.15.某中学从甲乙丙3人中选1人参加全市中学男子1500米比赛,现将他们最近集训中的10次成绩(单位:秒)的平均数与方差制成如下的表格:甲乙丙平均数250240240方差151520根据表中数据,该中学应选__________参加比赛.16.已知原点O(0,0),则点O到直线x+y+2=0的距离等于.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.据某市供电公司数据,2019年1月份市新能源汽车充电量约270万度,同比2018年增长,为了增强新能源汽车的推广运用,政府加大了充电桩等基础设施的投入.现为了了解该城市充电桩等基础设施的使用情况,随机选取了200个驾驶新能源汽车的司机进行问卷调查,根据其满意度评分值(百分制)按照,,…,分成5组,制成如图所示的频率分布直方图.(1)求图中的值并估计样本数据的中位数;(2)已知满意度评分值在内的男女司机人数比为,从中随机抽取2人进行座谈,求2人均为女司机的概率.18.在平面直角坐标系中,已知.(1)求的值;(2)若,求的值.19.在△中,若.(Ⅰ)求角的大小;(Ⅱ)若,,求△的面积.20.如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形,由对称性,图中8个三角形都是全等的三角形,设.(1)试用表示的面积;(2)求八角形所覆盖面积的最大值,并指出此时的大小.21.已知向量是夹角为的单位向量,,(1)求;(2)当m为何值时,与平行?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
由系统抽样.先确定分组间隔,然后编号成等差数列来求所抽取号码.【题目详解】由题知分组间隔为以,又第1组中抽取的号码为5,所以第7组中抽取的号码为.故选:A.【题目点拨】本题考查系统抽样,掌握系统抽样的概念与方法是解题基础.2、C【解题分析】
根据正弦定理可得三边的比例关系;由大边对大角可知最大,利用余弦定理求得余弦值,从而求得角的大小.【题目详解】由正弦定理可得:设,,最大为最大角本题正确选项:【题目点拨】本题考查正弦定理、余弦定理的应用,涉及到三角形中大边对大角的关系,属于基础题.3、A【解题分析】
先求出的值,即得解.【题目详解】由题得,,所以.故选A【题目点拨】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.4、D【解题分析】∵过两点A(4,y),B(2,-3)的直线的倾斜角是135°,∴,解得。选D。5、C【解题分析】
对四个选项逐个分析,可得出答案.【题目详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【题目点拨】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.6、D【解题分析】试题分析:圆心到直线的距离为,所以弦长为.考点:直线与圆的位置关系.7、D【解题分析】
根据正弦定理将已知等式化简得,再根据差角正切公式以及基本不等式可得结论.【题目详解】由正弦定理以及,可得,在中,代入上式中整理得,,即,即,且,所以,当且仅当,即时取等号.故选:D.【题目点拨】本题考查了正弦定理在解三角形中的应用,属于基础题.8、A【解题分析】
根据正切函数的图象与性质逐一判断即可.【题目详解】.,由得,,的对称中心为,,故正确;.在定义域内不是增函数,故错误;.为非奇非偶函数,故错误;.的图象不是轴对称图形,故错误.故选.【题目点拨】本题考查了正切函数的图象与性质,考查了整体思想,意在考查学生对这些知识的理解掌握水平,属基础题.9、D【解题分析】
利用等差数列性质得到,,计算得到答案.【题目详解】等差数列中,故选:D【题目点拨】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.10、A【解题分析】
根据棱柱的概念和四棱锥的基本特征,逐项进行判定,即可求解,得到答案.【题目详解】由题意,根据棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,侧棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等,①正确;②两对相对的侧面互相平行,不正确,如下图:左右侧面不平行.本题题目说的是“四棱柱”不一定是“直四棱柱”,所以,③④不正确,故选A.【题目点拨】本题主要考查了四棱柱的概念及其应用,其中解答中熟记棱柱的概念以及四棱锥的基本特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
本题可以先通过得出的解析式,再得出的解析式,最后通过数列是递减数列得出实数的取值范围.【题目详解】,因为该数列是递减数列,所以即因为所以实数的取值范围是.【题目点拨】本题考察的是递减数列的性质,递减数列的后一项减去前一项的值一定是一个负值.12、【解题分析】
试题分析:试题分析:由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.13、【解题分析】
利用余弦定理化简已知条件,求得的值,进而求得的大小.【题目详解】由得,由于,所以.【题目点拨】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.14、【解题分析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.15、乙;【解题分析】
一个看均值,要均值小,成绩好;一个看方差,要方差小,成绩稳定.【题目详解】乙的均值比甲小,与丙相同,乙的方差与甲相同,但比丙小,即乙成绩好,又稳定,应选乙、故答案为乙.【题目点拨】本题考查用样本的数据特征来解决实际问题.一般可看均值(找均值好的)和方差(方差小的稳定),这样比较易得结论.16、【解题分析】
由点到直线的距离公式得:点O到直线x+y+2=0的距离等于,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),中位数的估计值为75(2)【解题分析】
(1)根据频率和为1计算,再判断中位数落在第三组内,再计算中位数.(2)该组男司机3人,女司机2人.记男司机为:,,,女司机为:,.排列出所有可能,计算满足条件的个数,相除得到答案.【题目详解】解:(1)根据频率和为1得.则.第一组和第二组的频率和为,则中位数落在第三组内.由于第三组的频率为0.4,所以中位数的估计值为75.(2)设事件:随机抽取2人进行座谈,2人均为女司机.的人数为人.∴该组男司机3人,女司机2人.记男司机为:,,,女司机为:,.5人抽取2人进行座谈有:,,,,,,,,,共10个基本事件.其中2人均为女司机的基本事件为.∴.∴随机抽取2人进行座谈,2人均为女司机的概率是.【题目点拨】本题考查了中位数和概率的计算,意在考查学生的计算能力和应用能力.18、(1);(2).【解题分析】
(1)由,得到,再结合向量的模的运算公式,即可求解.(2)因为,得到,求得,结合正切的倍角公式,即可求解.【题目详解】(1)由题意知,所以,因此;(2)因为,所以,即,因此.【题目点拨】本题主要考查了向量的坐标运算,向量的模的求解,以及向量的垂直的条件的应用和正切的倍角公式的化简求值等,着重考查了推理与计算能力,属于基础题.19、(Ⅰ)(Ⅱ)【解题分析】
(I)利用正弦定理化简已知条件,由此求得的大小.(II)利用余弦定理求得的值,再根据三角形面积公式求得三角形面积.【题目详解】解:(Ⅰ)在△中,由正弦定理可知,,所以.所以.即.(Ⅱ)在△中,由余弦定理可知,.所以.所以.所以△的面积.【题目点拨】本小题主要考查正弦定理和余弦定理解三角形,考查三角形的面积公式,属于基础题.20、(1),.(2)时,达到最大此时八角形所覆盖面积前最大值为.【解题分析】
(1)注意到,从而的周长为,故,所以,注意.(2)令,则,根据可求最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论