2024届云南省隆阳区二中高一数学第二学期期末统考试题含解析_第1页
2024届云南省隆阳区二中高一数学第二学期期末统考试题含解析_第2页
2024届云南省隆阳区二中高一数学第二学期期末统考试题含解析_第3页
2024届云南省隆阳区二中高一数学第二学期期末统考试题含解析_第4页
2024届云南省隆阳区二中高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省隆阳区二中高一数学第二学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下图是实现秦九韶算法的一个程序框图,若输入的,,依次输入的为2,2,5,则输出的()A.10 B.12 C.60 D.652.在中,若则等于()A. B. C. D.3.等差数列中,若,则=()A.11 B.7 C.3 D.24.在正方体中,,分别为棱,的中点,则异面直线与所成的角为A. B. C. D.5.函数的图像的一条对称轴是()A. B. C. D.6.如图,正方形中,是的中点,若,则()A. B. C. D.7.连续抛掷一枚质地均匀的硬币10次,若前4次出现正面朝上,则第5次出现正面朝上的概率是()A. B. C. D.8.已知数列中,,则=()A. B. C. D.9.已知x,y∈R,且x>y>0,则()A. B.C. D.lnx+lny>010.实数数列为等比数列,则()A.-2 B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.下列结论中:①②函数的图像关于点对称③函数的图像的一条对称轴为④其中正确的结论序号为______.12.如图所示,已知,用表示.13.在四面体A-BCD中,AB=AC=DB=DC=BC,且四面体A-BCD的最大体积为,则四面体A-BCD外接球的表面积为________.14.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为_________.15.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点若,则该双曲线的渐近线方程为________.16.已知一组样本数据,且,平均数,则该组数据的标准差为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且.(1)求的值;(2)若在上有且只有一个零点,,求的取值范围.18.设数列的前项和为,满足,且,数列满足,对任意的,且成等比数列,其中.(1)求数列的通项公式(2)记,证明:当且时,19.如图,在四棱锥中,,,,,,,分别为棱,的中点.(1)证明:平面.(2)证明:平面平面.20.正四棱锥S-ABCD的底面边长为2,侧棱长为x.(1)求出其表面积S(x)和体积V(x);(2)设,求出函数的定义域,并判断其单调性(无需证明).21.已知等比数列的公比是的等差中项,数列的前项和为.(1)求数列的通项公式;(2)求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】,,判断否,,,判断否,,,判断是,输出.故选.2、D【解题分析】

由正弦定理,求得,再由,且,即可求解,得到答案.【题目详解】由题意,在中,由正弦定理可得,即,又由,且,所以或,故选D.【题目点拨】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解题分析】

根据和已知条件即可得到.【题目详解】等差数列中,故选A.【题目点拨】本题考查了等差数列的基本性质,属于基础题.4、A【解题分析】

如图做辅助线,正方体中,且,P,M为和中点,,则即为所求角,设边长即可求得.【题目详解】如图,取的中点,连接,,.因为为棱的中点,为的中点,所以,所以,则是异面直线与所成角的平面角.设,在中,,,则,即.【题目点拨】本题考查异面直线所成的角,解题关键在于构造包含异面直线所成角的三角形.5、C【解题分析】对称轴穿过曲线的最高点或最低点,把代入后得到,因而对称轴为,选.6、B【解题分析】

以为坐标原点建立平面直角坐标系,设正方形边长为,利用平面向量的坐标运算建立有关、的方程组,求出这两个量的值,可得出的值.【题目详解】以为坐标原点建立平面直角坐标系,设正方形边长为,由此,,故,解得.故选B.【题目点拨】本题考查平面向量的线性运算,考查平面向量的基底表示,解题时也可以利用坐标法来求解,考查运算求解能力,属于中等题.7、D【解题分析】

抛掷一枚质地均匀的硬币有两种情况,正面朝上和反面朝上的概率都是,与拋掷次数无关.【题目详解】解:抛掷一枚质地均匀的硬币,有正面朝上和反面朝上两种可能,概率均为,与拋掷次数无关.故选:D.【题目点拨】本题考查了概率的求法,考查了等可能事件及等可能事件的概率知识,属基础题.8、B【解题分析】

,故选B.9、A【解题分析】

结合选项逐个分析,可选出答案.【题目详解】结合x,y∈R,且x>y>0,对选项逐个分析:对于选项A,,,故A正确;对于选项B,取,,则,故B不正确;对于选项C,,故C错误;对于选项D,,当时,,故D不正确.故选A.【题目点拨】本题考查了不等式的性质,属于基础题.10、B【解题分析】

由等比数列的性质计算,注意项与项之间的关系即可.【题目详解】由题意,,又与同号,∴.故选B.【题目点拨】本题考查等比数列的性质,解题时要注意等比数列中奇数项同号,偶数项同号.二、填空题:本大题共6小题,每小题5分,共30分。11、①③④【解题分析】

由两角和的正切公式的变形,化简可得所求值,可判断①正确;由正切函数的对称中心可判断②错误;由余弦函数的对称轴特点可判断③正确;由同角三角函数基本关系式和辅助角公式、二倍角公式和诱导公式,化简可得所求值,可判断④正确.【题目详解】①,故①正确;②函数的对称中心为,,则图象不关于点对称,故②错误;③函数,由为最小值,可得图象的一条对称轴为,故③正确;④,故④正确.【题目点拨】本题主要考查三角函数的图象和性质应用以及三角函数的恒等变换,意在考查学生的化简运算能力.12、【解题分析】

可采用向量加法和减法公式的线性运算进行求解【题目详解】由,整理得【题目点拨】本题考查向量的线性运算,解题关键在于将所有向量通过向量的加法和减法公式转化成基底向量,属于中档题13、【解题分析】

当面ABC面与BCD垂直时,四面体A-BCD的体积最大,根据最大体积为求出四面体的边长,又△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心位于的中点,从而得到半径,即可求解.【题目详解】如图所示:当面ABC面与BCD垂直时,四面体A-BCD的体积最大为,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心为的中点,又,解得,,,所以四面体A-BCD外接球的半径故四面体A-BCD外接球的表面积为.【题目点拨】本题考查多面体的外接圆及相关计算,多面体外接圆问题关键在圆心和半径.14、【解题分析】记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站的战法有=4种站法∴=15、【解题分析】

根据题意到,联立方程得到,得到答案.【题目详解】,故.,故,故,故.故双曲线渐近线方程为:.故答案为:.【题目点拨】本题考查了双曲线的渐近线问题,意在考查学生的计算能力和综合应用能力.16、11【解题分析】

根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案.【题目详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:11.【题目点拨】本题主要考查平均数、方差与标准差,属于基础题.样本方差,标准差.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)利用降次公式、辅助角公式化简表达式,利用求得的值.(2)令,结合的取值范围以及三角函数的零点列不等式,解不等式求得的取值范围.【题目详解】(1),,,即.(2)令,则,,,在上有且只有一个零点,,,的取值范围为.【题目点拨】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.18、(1).;.(2)证明见解析.【解题分析】

(1)当时,由,两式相减得,用等差中项确定是等差数列再求通项公式.令,根据成等比数列,求得,从而得到(2)由(1)知根据证明的结构使用放缩法,得到,再相消法求和.【题目详解】(1)当时,由,得,两式相减得,当时,,所以是等差数列.又因为,所以,所以,所以..令,因为成等比数列,所以,所以,所以,又因为.,所以.(2)由(1)知,因为,所以,.同理所以所以.所以当且时,【题目点拨】本题主要考查了数列递推关系和等比数列的性质,放缩法证明数列不等式问题,属于难题.19、(1)见解析(2)见解析【解题分析】

(1)由勾股定理得,已知,故得证;(2)由题,E为AB中点,,故ABCD为平行四边形,,由F为PB中点,EF为三角形APB的中位线,故,AP和AD相交于A,EF和CE相交于E,故得证.【题目详解】证明:(1)因为,,,所以,由所以.因为,,所以平面.(2)因为为棱的中点,所以,因为,所以.因为,所以,所以四边形为平行四边形,所以,所以平面.因为,分别为棱,的中点,所以,所以平面.因为,平面,平面,所以平面平面.【题目点拨】本题考查直线和平面垂直的判定,平面和平面平行的判断,比较基础.20、(1),;(2)x>,是减函数.【解题分析】

(1)画出图形,分别求出四棱锥的高,及侧面的高的表达式,即可求出表面积与体积的表达式;(2)结合表达式,可求出的范围,即定义域,然后判断其为减函数.【题目详解】(1)过点作平面的垂线,垂足为,取的中点,连结,因为为正四棱锥,所以,,,,所以四棱锥的表面积为,体积.(2),解得,是减函数.【题目点拨】本题考查了四棱锥的结构特征,考查了表面积与体积的计算,考查了学生的空间想象能力与计算能力,属于中档题.21、(1),;(2).【解题分析】

(1)先由题意,列出方程组,求出首

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论