2024届吉林省通化市第十四中学数学高一第二学期期末学业质量监测模拟试题含解析_第1页
2024届吉林省通化市第十四中学数学高一第二学期期末学业质量监测模拟试题含解析_第2页
2024届吉林省通化市第十四中学数学高一第二学期期末学业质量监测模拟试题含解析_第3页
2024届吉林省通化市第十四中学数学高一第二学期期末学业质量监测模拟试题含解析_第4页
2024届吉林省通化市第十四中学数学高一第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省通化市第十四中学数学高一第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是不共线的非零向量,,,,则四边形是()A.梯形 B.平行四边形 C.矩形 D.菱形2.某正弦型函数的图像如图,则该函数的解析式可以为().A. B.C. D.3.为了得到函数的图象,只需把函数的图象上所有点的()A.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.B.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.C.横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移.D.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向右平移.4.设函数,其中为已知实常数,,则下列命题中错误的是()A.若,则对任意实数恒成立;B.若,则函数为奇函数;C.若,则函数为偶函数;D.当时,若,则().5.已知向量,且,则的值是()A. B. C.3 D.6.已知圆与圆有3条公切线,则()A. B.或 C. D.或7.若,则()A.- B. C. D.8.等差数列中,已知,则()A.1 B.2 C.3 D.49.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.910.一只小狗在图所示的方砖上走来走去,最终停在涂色方砖的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在封闭的直三棱柱内有一个表面积为的球,若,则的最大值是_______.12.若直线与直线互相平行,那么a的值等于_____.13.把二进制数化为十进制数是:______.14.设()则数列的各项和为________15.已知数列的前项和为,,,则__________.16.适合条件的角的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为.若.(1)求;(2)求的面积的最大值.18.总书记在党的十九大报告中指出,要在“幼有所育、学有所教、劳有所得、病有所医、老有所养、住有所居、弱有所扶”上不断取得新进展,保证全体人民在共建共享发展中有更多获得感.现S市政府针对全市10所由市财政投资建设的敬老院进行了满意度测评,得到数据如下表:敬老院ABCDEFGHIK满意度x(%)20342519262019241913投资原y(万元)80898978757165626052(1)求投资额关于满意度的相关系数;(2)我们约定:投资额关于满意度的相关系数的绝对值在0.75以上(含0.75)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则采取“末位淘汰”制(即满意度最低的敬老院市财政不再继续投资,改为区财政投资).求在剔除“末位淘汰”的敬老院后投资额关于满意度的线性回归方程(系数精确到0.1)参考数据:,,,,.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.线性相关系数.19.已知等比数列{an}的前n项和为Sn,S3=,S6=.(1)求数列{an}的通项公式an;(2)令bn=6n-61+log2an,求数列{bn}的前n项和Tn.20.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)若从第,,组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第,,组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.21.已知的顶点都在单位圆上,角的对边分别为,且.(1)求的值;(2)若,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

本题首先可以根据向量的运算得出,然后根据以及向量平行的相关性质即可得出四边形的形状.【题目详解】因为,所以,因为,是不共线的非零向量,所以且,所以四边形是梯形,故选A.【题目点拨】本题考查根据向量的相关性质来判断四边形的形状,考查向量的运算以及向量平行的相关性质,如果一组对边平行且不相等,那么四边形是梯形;如果对边平行且相等,那么四边形是平行四边形;相邻两边长度相等的平行四边形是菱形;相邻两边垂直的平行四边形是矩形,是简单题.2、C【解题分析】试题分析:由图象可得最大值为2,则A=2,周期,∴∴,又,是五点法中的第一个点,∴,∴把A,B排除,对于C:,故选C考点:本题考查函数的图象和性质点评:解决本题的关键是确定的值3、B【解题分析】

利用三角函数的平移和伸缩变换的规律求出即可.【题目详解】为了得到函数的图象,先把函数图像的纵坐标不变,横坐标缩短到原来的倍到函数y=3sin2x的图象,再把所得图象所有的点向左平移个单位长度得到y=3sin(2x+)的图象.故选:B.【题目点拨】本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数性质的应用,三角函数图象的平移变换和伸缩变换的应用,属于基础题.4、D【解题分析】

利用两角和的余弦公式化简表达式.对于A选项,将化简得到的表达式代入上述表达式,可判断出A选项为真命题.对于B选项,将化简得到的表达式代入上述表达式,可判断出为奇函数,由此判断出B选项为真命题.对于C选项,将化简得到的表达式代入上述表达式,可判断出为偶函数,由此判断出C选项为真命题.对于D选项,根据、,求得的零点的表达式,由此求得(),进而判断出D选项为假命题.【题目详解】.不妨设.为已知实常数.若,则得;若,则得.于是当时,对任意实数恒成立,即命题A是真命题;当时,,它为奇函数,即命题B是真命题;当时,,它为偶函数,即命题C是真命题;当时,令,则,上述方程中,若,则,这与矛盾,所以.将该方程的两边同除以得,令(),则,解得().不妨取,(且),则,即(),所以命题D是假命题.故选:D【题目点拨】本小题主要考查两角和的余弦公式,考查三角函数的奇偶性,考查三角函数零点有关问题的求解,考查同角三角函数的基本关系式,属于中档题.5、A【解题分析】

由已知求得,然后展开两角差的正切求解.【题目详解】解:由,且,得,即.,故选A.【题目点拨】本题考查数量积的坐标运算,考查两角差的正切,是基础题.6、B【解题分析】

由两圆有3条公切线,可知两圆外切,则圆心距等于两圆半径之和,求解即可.【题目详解】由题意,圆与圆外切,所以,即,解得或.【题目点拨】本题考查了两圆外切的性质,考查了计算能力,属于基础题.7、B【解题分析】

首先观察两个角之间的关系:,因此两边同时取余弦值即可.【题目详解】因为所以所以,选B.【题目点拨】本题主要考查了三角函的诱导公式.解决此题的关键在于拼凑出,再利用诱导公式(奇变偶不变、符号看象限)即可.8、B【解题分析】

已知等差数列中一个独立条件,考虑利用等差中项求解.【题目详解】因为为等差数列,所以,由,,故选B.【题目点拨】本题考查等差数列的性质,等差数列中若,则,或用基本量、表示,整体代换计算可得,属于简单题.9、A【解题分析】

根据求解.【题目详解】由题得.故选:A【题目点拨】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.10、C【解题分析】

方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可计算出所求事件的概率.【题目详解】由图形可知,方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可知,小狗最终停在涂色方砖的概率为,故选:C.【题目点拨】本题考查利用几何概型概率公式计算事件的概率,解题时要理解事件的基本类型,正确选择古典概型和几何概型概率公式进行计算,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据已知可得直三棱柱的内切球半径为,代入球的表面积公式,即可求解.【题目详解】由题意,因为,所以,可得的内切圆的半径为,又由,故直三棱柱的内切球半径为,所以此时的最大值为.故答案为:.【题目点拨】本题主要考查了直三棱柱的几何结构特征,以及组合体的性质和球的表面积的计算,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.12、;【解题分析】由题意得,验证满足条件,所以13、51【解题分析】110011(2)14、【解题分析】

根据无穷等比数列的各项和的计算方法,即可求解,得到答案.【题目详解】由题意,数列的通项公式为,且,所以数列的各项和为.故答案为:.【题目点拨】本题主要考查了无穷等比数列的各项和的求解,其中解答中熟记无穷等比数列的各项和的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解题分析】

先利用时,求出的值,再令,由得出,两式相减可求出数列的通项公式,再将的表达式代入,可得出.【题目详解】当时,则有,;当时,由得出,上述两式相减得,,得且,所以,数列是以为首项,以为公比的等比数列,则,,那么,因此,,故答案为.【题目点拨】本题考查等比数列前项和与通项之间的关系,同时也考查了等比数列求和,一般在涉及与的递推关系求通项时,常用作差法来求解,考查计算能力,属于中等题.16、【解题分析】

根据三角函数的符号法则,得,从而求出的取值范围.【题目详解】,的取值范围的解集为.故答案为:【题目点拨】本题主要考查了三角函数符号法则的应用问题,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)用正弦定理将式子化为,进行整理化简可得的值,即得角B;(2)由余弦定理可得关于的等式,再利用基本不等式和三角形面积公式可得面积最大值。【题目详解】(1)由题得,,,,解得,,.(2),由余弦定理得,,整理得,又,即,则的面积的最大值为.【题目点拨】本题考查用正弦定理求三角形内角,由余弦定理和基本不等式求三角形面积最大值,是基础题型。18、(1)0.72;(2)【解题分析】

(1)由题意,根据相关系数的公式,可得的值,即可求解;(2)由(1)可知,得投资额关于满意度没有达到较强线性相关,利用公式求得的值,即可得出回归直线的方程.【题目详解】(1)由题意,根据相关系数的公式,可得.(2)由(1)可知,因为,所以投资额关于满意度没有达到较强线性相关,所以要“末位淘汰”掉K敬老院.重新计算得,,,,所以,.所以所求线性回归方程为.【题目点拨】本题主要考查了回归分析的应用,同时考查了回归系数的计算,以及回归直线方程的求解,其中解答中利用公式准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)an=a1qn-1=2n-2;(2)Tn=n2-n..【解题分析】

(1)根据等比数列的通项公式和前项求得.(2)将代入中,得是等差数列,再求和.【题目详解】(1)∴,解得∴(2)∴∴数列是等差数列.又∴【题目点拨】本题考查等比数列和等差数列的通项和前项和,属于基础题.20、(1)分别抽取人,人,人;(2)【解题分析】

(1)频率分布直方图各组频率等于各组矩形的面积,进而算出各组频数,再根据分层抽样总体及各层抽样比例相同求解;(2)列出从名志愿者中随机抽取名志愿者所有的情况,再根据古典概型概率公式求解.【题目详解】(1)第组的人数为,第组的人数为,第组的人数为,因为第,,组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽取的人数分别为:第组:;第组:;第组:.所以应从第,,组中分别抽取人,人,人.(2)设“第组的志愿者有被抽中”为事件.记第组的名志愿者为,,,第组的名志愿者为,,第组的名志愿者为,则从名志愿者中抽取名志愿者有:,,,,,,,,,,,,,,,共有种.其中第组的志愿者被抽中的有种,答:第组的志愿者有被抽中的概率为【题目点拨】本题考查频率分布直方图,分层抽样和古典概型,注意列举所有情况时不要遗漏.21

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论