小学数学教学研究面授教案-第一讲_第1页
小学数学教学研究面授教案-第一讲_第2页
小学数学教学研究面授教案-第一讲_第3页
小学数学教学研究面授教案-第一讲_第4页
小学数学教学研究面授教案-第一讲_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

小学数学教学研究面授教案第一讲第一章小学数学学科性质及其任务本章主要内容:〔1〕了解数学科学的性质特征,了解数学教育的根本性质,知道作为科学的数学与作为学科的数学以及成人的数学与儿童的数学的区别;〔2〕从小学的学科特征出发,形成小学数学认识的三个根本观念;〔3〕掌握小学数学教育的根本价值追求和目标以及需要培养的根本能力。本章核心概念:数学本质与数学特征、数学科学与数学学科、生活数学观、儿童数学观与现实数学观、数学素养、观察与比拟、分析与综合、抽象与概括、判断与推理、普遍知识与特殊情境。本章重点知识:数学的本质、数学的特征、生活数学、儿童数学以及现实数学的根本含义、数学素养的根本内涵。本章重点能力:〔1〕能用例子分析作为科学的数学与现实数学、儿童数学或生活数学的不同;〔2〕能举例说明儿童在观察与比拟、分析与综合、抽象与概括或判断与推理等能力开展的特征;〔3〕能举例说明培养与开展儿童观察与比拟、分析与综合、抽象与概括或判断与推理等能力开展的途径;〔4〕能举例说明普遍知识与特殊情境之间的差异;〔5〕能举例说明如何开展儿童将数学运用到现实情境的能力。本章重点提示:〔1〕对数学本质的掌握要从理解出发,抓住几个关键的概念:数量、空间、形式科学关系系统;〔2〕对数学的抽象性特征的认识,可以抓住其“没有任何物质的和能量特征〞关键性质;〔3〕对数学的严谨性特征的认识,可以抓住其“唯一性〞和“精确自然结构〞两个关键性质;〔4〕对生活数学的认识,抓住可以“经验符号〞、“非形式化〞、“语言和直觉〞等关键性质;〔5〕对儿童数学的认识,可以抓住“儿童生活〞、“日常经验〞、“理解生活〞等关键性质;〔6〕对现实数学的认识,可以抓住“生活经验〞、“局部组织〞等关键性质;〔7〕对普遍知识与特殊情境关系的认识,可以从获得、保持、检索和解决四个角度来分析。本章重点辅导:1.数学的本质属性——是关于逻辑上是可能的、纯粹的〔即抽去了内容的〕形式科学和关于关系系统的科学。2.数学的特点——其一,数学的对象是由人类创造或创造的;其二,数学的创造源于对现实世界和数学世界研究的需要;其三,数学性质具有客观存在确实定性;其四,数学是一个开展的动态体系。3.数学的性质特征——〔1〕抽象性,即抽去了具体内容的,作为一个独立的客体而存在的,它用形式化、符号化和精确化的语言来表现一种“抽象的抽象〞或“概括性的抽象〞,它是以“一切存在的抽象的模型的模型〞而呈现的,是一种不具有任何物质的和能量的抽象;〔2〕严谨性,即通过逻辑性、精确性、系统性来表达它的严谨性;〔3〕应用性,即它涉及到整个客观世界,是解决我们生活和生产过程中问题的主要工具,因为没有一个物质的领域不呈现出数学可以研究的现象或规律的。4.数学学科——包括三个方面的含义:〔1〕数学学科知识内容的特定性,是指数学学科除了包含数学科学知识的结构与层次外,还包括了受教育的对象,即要根据特定的教学层次、教学目标和学生思维开展阶段的特色而构建的数学根本知识、根本理论、根本技能与经验和根本思想的体系;〔2〕数学学科逻辑结构的双重性,是指科学内在的逻辑性与学生心理开展的逻辑性,即前面阶段的学习知识是后面学习的根底,而后面的学习又是前面的开展,以及要按学生心理开展的规律来组织学习内容,表达在其内容体系上,一般都是按由易到难、循序渐进的程序设计的,这种设计可以有序的开展学生的心智技能和操作技能;〔3〕数学学科内容呈现的直观性,即小学数学学科,更多的是以实际的直观演示和具体的事例归纳的方式呈现在我们目前的。5.对小学数学的再认识——包括三个数学观,〔1〕生活数学观,是相对于科学数学观而言的。它是指儿童常常是通过探索他们自己的生活世界和精神世界来了解并获得数学学习的,是通过自己的大量的实践活动来获得数学知识的,是在许许多多的问题解决过程来开展自己的数学认知能力的;〔2〕儿童数学观,是相对于成人数学观而言的。它首先表现在数学学习的层次有差异,其次表现在数学活动的过程有差异,最后表现在构建数学知识的方式有差异;〔3〕现实数学观,是相对于理论数学观而言的。现实的数学实际上是由不同个体在不同的环境中的不同生活经历所形成的,用以支持自己在社会生活中的行为决策和行为方式的,它是进一步研究数学科学的就要根底。6.小学数学教育的根本任务——包括〔1〕以培养数学素养为根本追求,即以促进学生的终身可持续开展为学校数学教育的根本出发点,将小学数学教育定位于:不追求将所有的儿童都培养成为伟大的数学家,而是培养他们最根本的数学素养。数学素养的根本内涵包括要使学生懂得数学的价值,对自己的数学能力有自信心,有解决现实数学问题的能力,学会数学交流,以及学会数学的思想方法。数学素养的根本特征包括开展性、过程性和实践性;〔2〕以开展数学思维能力为根本的目标,包括观察与比拟、分析与综合、抽象与概括、判断与推理;〔3〕以将数学运用到现实情境为根本能力,包括学会用数学的思想来考察现实与构建普遍知识与特殊情境的联系。首先,数学教学应该引导儿童观察和认识周围世界最简单的数量关系,建立情境与一般法那么的联系,从而激发他们超越这些规那么并能用数学语言来进行表达的动机,真正使用数学知识成为学生生活和思维的组成局部,其次,在普通的数学规那么和特殊情境之间,其唯一桥梁是学生有意识在现实情境下进行数学思维。本章综合练习:一、名词解释数学本质、数学特征、生活数学观、儿童数学观、现实数学观、数学素养、观察与比拟、分析与综合、抽象与概括、判断与推理二、填空题1.数学开展历史存在着两个不同的起点,一是〔〕;一是〔〕。2.数学可以定义为是关于〔〕。3.数学的特点:其一,〔〕;其二,〔〕;其三,〔〕;其四,〔〕。4.数学的特征包括:〔〕、〔〕、〔〕。5.数学学科逻辑结构的双重性表达在〔〕和〔〕。6.数学思维能力包括〔〕、〔〕、〔〕、〔〕。7.数学素养的根本内涵是指〔〕、〔〕、〔〕、〔〕、〔〕;它的特征是〔〕、〔〕、()。三、判断题1.数学科学与数学学科是两个不同的概念。2.从“数学属于所有人的〞观念之下的“群众数学〞来看,作为小学数学课程的数学学科应该具有生活观、现实观和体验观。四、简答题1.什么是生活数学观、儿童数学观和现实数学观?倡导这种数学观对理解小学数学课程有哪些积极的意义?2.什么是数学素养?为什么说小学数学课程的最根本的价值追求就是开展学生的数学素养?五、论述题1.作为科学的数学与作为小学数学课程的数学有哪些区别?这些区别对我们理解小学数学课程的价值有哪些意义?2.普通的数学规那么(知识)和特殊情境之间有哪些不同?为什么要倡导开展学生将数学运用于现实情境的能力?考前须知:本章综合练习、文字教材上的练习以及形成性考核作业册上的练习都将作为期终考试内容。第二章小学数学课程的结构与目标本章主要内容:(1)知道课程的根本含义,了解我国传统的小学数学课程结构的主要特点;(2)了解建国以来我国小学数学课程的变革过程,掌握我国新世纪小学数学课程标准的根本观念和变革的主要特点;(3)知道影响小学数学课程目标的根本因素,掌握当今整个国际小学数学课程目标变革的主要特点,能对我国面向21世纪小学数学课程目标特点做根本分析。本章核心概念:课程与数学课程、课程标准与教学大纲、课程目标、过程性目标、数学思考。本章重点知识:课程的含义、传统小学数学课程结构特征、面向21世纪的小学数学课程的根本观念、影响小学数学课程目标的根本因素、当代整个国际小学数学课程目标变革的共同特点、新世纪我国小学数学课程目标的特点。本章重点能力:〔1〕能用例子分析面向21世纪我国小学数学课程变革的主要表达;〔2〕能用实例分析“社会的进步〞、“数学自身的开展〞以及“儿童观的开展〞是如何影响小学数学课程目标的变革的;〔3〕能具体分析新世纪世界主要兴旺国家和地区的小学数学课程目标的主要特点;〔4〕能具体分析和比拟建国后我国小学数学课程目标的历史开展;〔5〕能用实例具体分析新世纪我国小学数学课程目标的特点。本章重点提示:〔1〕能用例子分析面向21世纪我国小学数学课程变革的主要表达;〔2〕能用实例分析“社会的进步〞、“数学自身的开展〞以及“儿童观的开展〞是如何影响小学数学课程目标的变革的;〔3〕能具体分析新世纪世界主要兴旺国家和地区的小学数学课程目标的主要特点;〔4〕能具体分析和比拟建国后我国小学数学课程目标的历史开展;〔5〕能用实例具体分析新世纪我国小学数学课程目标的特点。本章重点辅导:1.课程——了解课程概念的几种定义,以及本书对课程的综合概括,即学习者在学校范围内的知识技能的增长,能力的开展,思想品德的提高,文明行为的养成,身体素质的改善等都包含在课程概念之内。2.数学课程——数学课程作为课程的一个组成局部,是完成整体课程任务,实现学生全面开展的重要方面,是学生在学校中获得的数学知识,技能,方法,能力及与之相关的全部经验,是学校数学教育培养人的蓝图。3.小学数学课程——是关于小学数学课程目标、小学数学课程体系、小学数学课程内容、小学数学课程内容的组织与呈现以及小学数学课程的实施和评价的学科。4.传统小学数学课程的特征——包括五个方面:〔1〕课程开发——学术中心;〔2〕课程组织——学科取向;〔3〕课程结构——螺旋式;〔4〕课堂教学——记忆为主;〔5〕学业评价——笔纸考试为主。5.小学数学课程的变革——应从三个方面来理解,一是国际小学数学课程的开展,要把握ICMI时代国际小学数学课程的开展和二战后国际小学数学课程的开展;二是我国小学数学课程的开展,要把握我国数学教育的几次变革,包括课程标准和教学大纲之关系,小学数学课程内容变革的阶段性成果;三是21世纪我国小学数学新课程,要掌握变革的内容,即素质教育的理念落实到课程标准之中、突破学科中心、改善学生的学习方式、评价建议具有更强的指导性和操作性、课程标准为教材的多样性和教学创造性提供了空间。6.小学数学课程目标——包括小学开设数学的重要性,数学学科对小学生特殊的教育作用和共同的教育作用,以及学生通过学习数学应当能到达的某种要求等。7.小学数学课程目标的改革与开展——应从两个方面来理解,国际小学数学课程目标的改革与开展和我国小学数学课程目标的历史变革。其中注重问题解决、注重数学应用、注重数学交流、注重数学思想方法、注重培养学生的态度情感与自信心是世界主要兴旺国家和地区的数学课程目标特点;新中国建立后小学数学课程目标的特点,一是十分强调实用性目的,即“根底知识和根本技能〞、“解决简单的实际问题〞等,二是局部强调学科目的,如“培养运算能力,开展逻辑思维能力和空间观念〞,三是强调积极的学习态度,如“培养学生良好的个性品质和初步的辩证唯物主义的观点〞。8.我国现行的小学数学课程目标的根本分析——《标准》对数学课程总体目标的论述采取了一般与具体相结合的方式。①数学课程的一般性目标包括:·获得适应未来社会生活和进一步开展所必需的重要数学知识〔包括数学事实、数学活动经验〕以及根本的数学思想方法和必要的应用技能。·初步学会运用数学的思维方式去观察、分析现实社会、去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。·体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。·具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分开展。②数学课程的总体目标具体化表现在:·知识与技能·数学思考·解决问题和情感与态度9.新世纪我国小学数学课程目标的特点分析——①对数学知识的理解发生了变化——数学知识不仅包括“客观性知识〞〔如乘法运算法那么、三角形面积公式等〕,而且还包括附属于学生自己的“主观知识〞,即带有鲜明个体认知特征的个人知识和数学活动经验。如对“数〞的作用的认识、分解图形的根本思路、解决某种数学问题的习惯性方法等。这些知识是具有经验性的、不那么严格的,是可错的;②强调了应该掌握的根本数学思想和方法,如函数思想、集合映射思想、方程思想、化归思想等;③强调在数学中存在的一种可以迁移到其他领域的东西,这就是数学思维方式,如合情推理、演绎推理、直觉思维和发散思维等;④强调运用数学思维方式解决日常生活中的问题,增强应用意识。更为关注是否向学生提供了具有现实背景的数学,包括他们生活中的数学。本章综合练习:一、名词解释课程、数学课程、课程标准、教学大纲、课程目标、过程性目标、数学思考。二、填空题1.小学数学课程是指〔〕的学科。2.现代中国的小学数学教育,始于〔〕时期。3.我国传统的小学数学课程有〔〕、〔〕、〔〕、〔〕、〔〕特征。4.我国面向21世纪的小学数学课程的根本理念是〔〕,而课程的变革主要又表达在〔〕方面。5.影响小学数学课程目标的根本因素有〔〕、〔〕、〔〕。6.建国后我国小学数学课程目标的历史开展经历了〔〕个阶段,它的特点有〔〕、〔〕、〔〕。7.随着《标准》的出台,掀起了我国新一轮的根底教育的课程改革运动,同时对我国小学数学课程带来了全方位的变革。这种变革主要表现在:〔〕、〔〕、〔〕、〔〕、〔〕、〔〕。三、判断题1.我国小学数学课程目标的改革未受到当时国际小学数学课程目标改革的影响。2.建国后我国小学数学课程目标相对无视了“经历、交流、体验、表达〞等过程性能力和“数学感、符号感、度量感〞等数学意识;相对无视了对学生的“欣赏数学美及力量〞和“数学史及数学文化价值〞等方面的培养。四、简答题1.传统的小学数学课程有哪些主要的特征?2.我国面向21世纪的小学数学新课程在哪些方面表现出开展与改革?五、论述题1.当今国际在小学数学课程目标的开展与变革上表现出哪些趋势?新世纪我国小学数学课程目标又表现出哪些开展与变革的特点?2.尝试分析与比拟新世纪我国与世界主要兴旺国家和地区小学数学课程目标的特点。考前须知:本章综合练习、文字教材上的练习以及形成性考核作业册上的练习都将作为期终考试内容。第三章小学数学教学内容本章主要内容:〔1〕知道小学数学课程内容的含义,了解小学数学课程内容的根本构成;〔2〕了解小学数学课程内容组织与呈现的根本特点;〔3〕对我国小学数学课程内容的开展以及改革特征有一个大致的了解。本章核心概念:课程内容、数感、符号感、空间观念、统计观念、应用意识、推理能力。本章重点知识:现今小学数学课程内容组织与编排的根本特点、现今小学数学课程内容呈现的根本特点、我国小学数学课程内容的开展脉络、现今小学数学课程内容的根本构成要素。本章重点能力:〔1〕能从开展的角度以及儿童的学习特点对小学数学课程内容作出简单的比拟与分析;〔2〕能用不同例子说明小学数学课程内容呈现方式的丰富多彩;〔3〕能举例说明社会政治经济开展对小学数学课程内容开展的影响;〔4〕能举例说明小学数学课程内容编排的根本特点。本章重点提示:〔1〕对现行《课程标准》确定的内容构成的了解,应从知识性结构、目标性结构和数学素养等三个纬度来认识;〔2〕对数感、符号感、空间观念、统计观念、应用意识与推理能力等的理解,要重点抓住数学素养这一数学教育的核心价值,并能运用实例来进行分析;〔3〕对小学数学课程内容选择的认识,重点要抓住选择的根本依据和根本原那么;〔4〕小学数学教育内容改革与开展的认识,重点抓住整个国际改革的趋势;〔5〕对我国小学数学课程内容在呈现方式上改革的认识,应当通过实例以及比拟等方式来获得。本章重点辅导:1.传统小学数学内容结构——包括七个方面:认数与计算、量与计算、几何初步知识、代数初步知识、统计初步知识、比与比例、应用题。2.现代小学数学内容结构——经过整合,以“适当精选算术内容,适当增加代数、几何的初步知识,适当渗透一些集合、函数、统计等数学思想〞为指导思想,选定的内容包括六个方面:认数与计算、量与计算、几何初步知识、代数初步知识、统计初步知识、应用题。3.新《课程标准》对小学数学课程的要求——新《课程标准》颁发后,将负数、方位的认识、几何图形的平移、旋转和对称变换和简单的概率知识纳入小学数学课程中,它的最大特点是其多纬度的内容结构,这种多纬度的内容结构,可以从三个方面来解读:〔1〕从知识的领域切入;〔2〕从数学学习的目标切入;〔3〕从数学活动的素养切入,包括数感、符号感、空间观念、统计观念、应用意识、推理能力。4.选择小学数学课程内容的主要依据——包括依据义务教育的性质和需要、依据现代科学技术开展的趋势和社会开展的实际需要、依据小学生的年龄特征和接受能力。5.选择小学数学课程内容的根本原那么——包括根底性原那么、可接受性与开展性相结合的原那么、统一性与灵活性相结合的原那么、教育作用原那么。6.小学数学课程内容的编排原那么——包括正确处理数学知识的逻辑顺序与儿童心理开展顺序的关系、适当分段,螺旋上升,由浅入深,循序渐进的原那么、突出根本概念和根本规律,加强各局部知识的纵横联系和配合、简明性原那么、渗透性原那么。7.小学数学课程内容呈现的根本要求——包括内容的表述要注意其可读性、内容的呈现要图文并茂,注意其直观性、内容的组织要有利于学生对数学知识的再发现。8.新课程标准对小学数学课程内容呈现的根本要求——第一学段〔1---3年级〕教材的呈现要求:本学段的学生以形象思维为主,在教材编写时,应采用多种多样的形式(如图片、游戏、卡通、表格、文字等),直观形象、图文并茂、生动有趣地呈现素材,提高学生的学习兴趣,满足多样化的学习需求;第二学段〔4---6年级〕教材的呈现方式:与第一学段相比,本学段的教学内容出现了更多数量的文字和符号,所以教材的呈现方式应在图文并茂的同时,逐渐增加数学语言的比重,可以运用学生感兴趣的图片、游戏、表格、文字等形式,直观形象地呈现教材的内容。9.国际上小学数学课程内容的组织与呈现的开展趋势——在选择上表现出“切近儿童生活〞的价值取向、在呈现上表现出“强化过程体验〞的价值取向、在组织上表现出“注重探究发现〞的价值取向。10.世界范围内对小学数学课程内容改革的特点——包括注重问题解决、注重数学运用、注重数学思想与数学交流、注重信息处理、注重数学体验、注重数学活动。11.我国小学数学课程内容结构变革的特点——包括课程内容的安排体系由单一式开展为综合式、从课程内容的开展上来分,有螺旋式、直线式、过渡式三种、以例题、练习相结合的体例展示教学内容、教材的呈现根据教学内容和学生的根底作不同的处理。12.我国小学数学课程内容在呈现方式上的改革——表达价值的主体性、表达知识的现实性、表达学习的探究性、表达经历的体验性、表达过程的开放性、表达呈现的多样性。本章综合练习:一、名词解释课程内容、数感、符号感、空间观念、统计观念、应用意识、推理能力。二、填空题1.传统小学数学内容结构包括〔〕、〔〕、〔〕、〔〕、〔〕、〔〕、〔〕、〔〕、〔〕。2.现代小学数学内容结构是以〔〕为指导思想。3.选择小学数学课程内容的主要依据包括〔〕、〔〕、〔〕。4.选择小学数学课程内容的根本原那么包括〔〕、〔〕、〔〕、〔〕。5.小学数学课程内容的编排原那么包括〔〕、〔〕、〔〕、〔〕、〔〕、〔〕。6.世界范围内对小学数学课程内容改革的特点包括〔〕、〔〕、〔〕、〔〕、〔〕、〔〕、〔〕。三、判断题1.小学数学课程内容的编排不需考虑数学知识的逻辑顺序与儿童心理开展顺序的关系。2.小学数学课程内容的呈现只需遵循数学知识逻辑结构,而不必考虑学生思维水平的开展顺序。四、简答题1.小学数学教材的组织与呈现有哪些根本的方式?2.在当今的世界范围内,小学数学课程内容改革有哪些共同的根本特点?五、论述题1.传统的小学数学课程内容结构与呈现方式有哪些特征?从开展学生的数学素养的角度看,它们有哪些优点?又有哪些缺点?2.现代小学数学课程内容构成有哪些最主要的特征?这些特征对开展学生的数学素养有哪些促进作用?3.表达我国小学数学课程内容的历史演变。4.请用实例分析国际上小学数学课程内容的组织与呈现的开展趋势。5.请用实例分析我国新课程标准对小学数学课程内容呈现的根本要求。考前须知:本章综合练习、文字教材上的练习以及形成性考核作业册上的练习都将作为期终考试内容。第四章儿童的数学学习本章主要内容:〔1〕掌握学习的根本分类,知道迁移在小学数学教学中的重要作用;〔2〕了解儿童是如何学习和理解数学的,掌握儿童数学认知的根本过程;〔3〕懂得小学数学教育的主要任务,知道儿童在数学认知学习中的个别差异。本章核心概念:知识分类、发现学习与接受学习、知识学习、技能学习和问题解决学习、学习层次、学习层次的影响与制约、迁移、迁移形式、影响因素、儿童的数学认知特点、数学能力、能力的结构性差异。本章重点知识:数学知识与数学学习的分类、儿童数学认知的特征、儿童的数学概念开展、数学技能开展、空间知觉能力开展、数学问题解决能力开展、数学学习的层次、儿童的数学能力差异。本章重点能力:〔1〕能用例子分析儿童在三种不同数学知识下的学习过程特征;〔2〕能举例说明儿童在不同学习的归纳水平上的不同层次学习的根本特点;〔3〕能从具体实例辨识不同的数学思维水平下的不同学习层次;〔4〕能举例说明儿童为数学认知的根本特点;〔5〕能举例说明儿童的数学概念、数学技能、数学问题解决能力以及空间知觉能力开展的根本规律;〔6〕能通过实例分析儿童在数学能力结构类型中的差异。本章重点提示:〔1〕对发现学习和接受学习的认识,关键抓住其根本过程模式;〔2〕对技能性知识学习的认识,抓住运算技能形成的三阶段模式;〔3〕对按学习的归纳水平来区分的学习层次的认识,抓住“学习呈现特点〞来理解;〔4〕按学习的数学思维角度来区分的学习层次的认识,抓住“学习表现例举〞来理解;〔5〕对影响学习层次因素的认识,抓住“学习任务〞、“学习目标〞、“学习策略〞和“教学策略〞等关键因素;〔6〕对儿童数学的认识,抓住“儿童生活〞、“日常经验〞、“理解生活〞等关键性质;〔7〕对儿童在数学能力结构类型中的差异的认识,可以抓住“分析型是语言—逻辑占优势〞和“几何型是视觉—形象占优势〞这两个特点。本章重点辅导:1.常见的认知学习类型——常见的认知学习类型包括接受学习与发现学习、知识学习、技能学习和问题解决学习。2.在小学数学学习中存在三种互相渗透与相互支持的不同的知识:陈述性〔也称概念性〕知识、程序性〔也称自动化技能〕知识和解决问题的策略性知识。相对应的,那么存在着三种不同类型的数学学习,它们是小学数学学习中的主要形态。3.概念性知识——像定义〔命题〕、公式、处理事情的法那么、科学原理、定律、规那么等都称为概念性知识,以及分类、守恒、对应、排列、可逆性和质的相似性等这样一些概念;它的学习过程是一个简化、概括化和建立联系思维过程。4.技能性知识——技能性知识主要指运算技能,运算技能性知识的形成分为三个阶段:认知阶段、联结阶段、自动化的阶段。5.策略性知识——问题解决是小学数学策略性知识的主要内容。它是一种更为高级的一种学习活动。要求学生在解决数学问题时,掌握数学知识重新组合,利用各种思维素材进行思考。问题一旦解决了,要有所收获。在问题解决中产生的策略,那么被贮存下来并构成学生认知结构的一个组成局部。6.小学数学的学习任务——包括三类:记忆操作类的学习、理解性的学习、探索性的学习。7.学习迁移——〔也称认知迁移〕通常是指一种学习〔或经验〕对另一种学习的影响。这种影响可以作用于同类的情境,也可作用于不同类的情境;可以是自觉的,也可以是不自觉的;可以是适当的〔常称为正迁移〕,也可以是不适当的〔常称为负迁移〕。8.迁移的根本形式与过程——迁移主要有两种形式:第一是同化。即将原有经验运用到同类情境中去,从而将新事物纳入已有的经验系统。第二是顺应〔也称异化〕。即将已有经验有选择地运用到异类情境中去,使已有的经验对当前的学习发生影响,并使原有经验获得改组,构成一个新的认知结构。9.迁移的根本类型——迁移主要有两种根本的类型,即正迁移和负迁移〔也称干扰〕。所谓正迁移,实际上就是指一种学习对另一种学习产生正面的和积极的影响,这种影响将促进当前有意义学习的发生。所谓负迁移,实际上就是指一种学习对另一种学习产生负面的干扰作用,这种影响将阻碍当前有意义学习的发生。10.儿童获得数学概念能力的开展——包括从获得并建立初级概念为主开展到逐步能理解并建立二级概念、概念的获得以“概念形成〞为主逐渐开展到“概念同化〞为主、从认识概念的自身属性逐步开展到理解概念间的联系、数学概念的建立受经验的干扰逐渐减弱、数、形的别离开展到数、形的结合五个方面。11.儿童数学技能的开展——包括依赖结构完满的示范导向开展到依赖对内部意义的理解、从外部的展开的思维开展到内部的压缩的思维、数感和符号感的逐步提高,支持着运算向灵活性、简洁性与多样性的开展三个方面。12.儿童空间知觉能力的开展——包括方位感是逐步建立的、空间概念的建立逐渐从外显特征的把握开展到从本质特征的把握、空间透视能力是逐步增强的三个方面。13.儿童数学问题解决能力的开展——包括语言表述阶段、理解结构阶段、多极推理能力的形成、符号运算阶段四个方面。14.儿童数学学习能力的水平差异——包括具有个性特征的数学能力类别、在结构类型中所表现出的能力差异、在数学学习风格中的所表现出的能力差异。本章综合练习:一、名词解释知识分类、发现学习与接受学习、知识学习、技能学习和问题解决学习、学习层次、学习层次的影响与制约、迁移、迁移形式、影响因素、儿童的数学认知特点、数学能力、能力的结构性差异。二、填空题1.小学数学学习分类,可以从两个角度进行,一个是从〔〕的角度分类,一个是从〔〕的角度分类。2.奥苏伯尔等把有意义学习由低到高分成六级,它们包括:〔〕、〔〕、〔〕、〔〕、〔〕、〔〕、〔〕。3.比格斯那么认为存在着6种不同的学习:〔〕、〔〕、〔〕、〔〕、〔〕、〔〕、〔〕。4.从迁移反响的条件看,在小学数学的认知中实现迁移,主要取决于〔〕、〔〕、〔〕、〔〕这样几个根本的条件。5.小学生实现数学认知迁移的根本特征包括〔〕、〔〕、〔〕、〔〕、〔〕。6.所谓数学思维,就是〔〕进行的思维能力。三、判断题1.儿童的认知特点与成人的认知特点完全一致。2.儿童的数学认知的起点是以他们的生活常识为根底的。3.儿童的数学认知思维具有明显的普遍化特征。4.儿童最初获得的,主要是有关数和数量的概念,在这个阶段,数的概念与形的概念是不别离的。四、简答题1.简述弗赖簦塔尔的学习层次。2.简述斯托利亚尔的数学思维学习层次。3.从小学数学认知学习看,正、负迁移通常表现什么样的形态?五、论述题1.小学数学知识以及与之相应的学习可以进行怎样的分类?2.对小学数学学习按不同的水平层次可以进行怎样的分类?这些分类对实现课程价值有哪些意义?3.儿童数学认知学习有哪些根本的特点?儿童数学认知开展的根本规律又有哪些?认识这些根本特点和根本规律,对实现小学数学课程价值有哪些意义?4.通过临床观察的方法,尝试对儿童数学认识能力的非水平差异设计一些有价值的案例并进行案例分析。考前须知:本章综合练习、文字教材上的练习以及形成性考核作业册上的练习都将作为期终考试内容。第五章小学数学主要学习理论与教学模式的分析本章主要内容:〔1〕了解一些主要的数学学习理论或教学模式的以及相应的教学过程特征;〔2〕知道这些学习理论或教学模式的运用及其优缺点;〔3〕能用这些根本的数学学习理论或教学模式对课程实践做简要的分析。本章核心概念:程序教学模式、发现学习理论、探究学习理论、再创造学习理论、范例教学模式。本章重点知识:有意义的接受学习理论的根本特点、程序教学模式的理论根底、根本流程、主要特征、运用要求及其评析、发现学习的理论根底、根本流程、主要特征、运用要求及其评析、探究学习的理论根底、根本流程、主要特征、运用要求及其评析、再创造学习的理论根底、根本流程、主要特征、运用要求及其评析、范例教学模式的理论根底、根本流程、主要特征、运用要求及其评析。本章重点能力:〔1〕能分析和辨识一些典型案例所主要运用的学习理论或教学模式以及相应的教学过程特征;〔2〕能根据相应的学习理论或教学模式要求进行教学设计;〔3〕能用实例分析五种不同的学习理论或教学模式在教学中运用时的根本要求。本章重点提示:〔1〕对五种学习理论的认识,重点要从其相应的理论根底入手;〔2〕对五种学习理论的掌握,关键在于能知道并掌握其相应的教学流程;〔3〕对五种学习理论的运用,根底在于能把握在教学中运用时的一些重要的要求;〔4〕五种学习理论的分析,主要能从其不同的有缺点展开。本章重点辅导:1.程序教学——最早源于20世纪30年代的自动的教学机器,它是由美国奥亥俄州立大学的普雷西设计的。程序教学的理论根底是斯金纳的强化理论。程序教学模式主要有三种:直线式程序、衍枝式程序、莫菲尔德程序。要了解这三种模式的根本含义。这三种模式有根本相同的流程,即解释、显示问题、解答。程序教学模式几个特征分别为积极反响、小步子、即时反响、自定步调。掌握它在小学数学教学中的应用。掌握程序教学的主要优缺点。2.发现学习——源自于“启发学习〞,就是指学生不是从教师的讲述中得到一个概念或原那么,而是在教师组织的学习情境中,学生通过自己的头脑亲自获得知识的一种方法。它的理论根底是布鲁纳的认知发现理论,最早起源于完形说,即格式塔〔Gestalt〕理论。学生在学习时要掌握发现教学模式的根本流程及其特征,即创设情境——提出假设——检验假设——总结运用;它的特征有以下几点:第一,发现教学模式注重知识的发生、开展过程,提倡让学生自己发现问题,分析问题,解决问题,主动获取知识;第二,发现教学模式强调学生学习的主动性,强调学生学习的认知过程,重视认知结构、知识结构和学生的独立思考在学习中的重要作用;第三,发现教学模式强调教师的作用不是提供现成的知识,而是促进学生积极地去思考并参与帮助学生知识的获得。掌握发现教学模式在小学数学教学中的运用以及它的主要优缺点。3.探究学习——最早源于20世纪初的以经验哲学为根底的美国心理学家和教育家杜威〔JohnDewey〕就用“主动作业〞的课程形态来实施其所倡导的“做中学〞教育思想。探究学习指的是仿照科学研究的过程来学习科学内容,从而在掌握科学内容的同时体验、理解和应用科学研究方法,掌握科研能力的一种学习方式。它的理论根底是以杜威、施瓦布、萨其曼等学者关于探究学习的论述。它的根本流程是:设置问题情境——提出假设——获得结论——反思评价。探究教学的根本特征主要表达在:第一,强调学习就是学生自己参与、卷入和经历分析与认识的过程;第二,强调学生是学习的主体。学习活动是学生与情境主动作用的过程。学生通过自己发现问题、提出问题,分析问题,解决问题的过程中主动获取知识;第三,强调学习过程的开放性。一方面,学生在学习过程中可以广泛地与他人合作、交流与共享;另一方面,在学习活动期间会遇到很多不可预测的瞬间。掌握探究教学模式在小学数学教学中的运用以及它的主要优缺点。4.再创造学习——源于弗赖登塔尔的观点,即学生学习过程中的假设干步骤的最重要的特征还在于“再创造〞,它包含两层含义:其一,学生的学习并不是简单地接受,并不是一个被动地获取数学家们已经发现和创造的那些概念、命题、法那么、方法等等,而应具有实践性活动的特征,是学生自己的一种“创造〞过程——数学化;其二,这种实践性的活动并不是要求学生去模仿或重复数学家们发现并创造数学的过程,而是要求学生将那些已经被发现或创造的数学作为实践性活动的任务,让他们自己去“再发现〞和“再创造〞。再创造学习理论的理论根底是弗赖登塔尔创立的“数学现实〞教育思想。再创造教学模式的根本流程就是“数学化〞的过程。数学化的过程可先后分两个层次:水平数学化和垂直数学化,即首先要将现实问题转化到数学问题,即要发现现实问题中的数学成分,并对这些成分做符号化处理,这是水平数学化。当问题一旦转化成或多或少具有数学性质的问题时,再从具体问题转化到抽象概念和方法,建立数学问题与数学形式系统之间的关系,这一过程是垂直数学化的过程。概括起来是:呈现问题情境——提出问题——分析问题——发现规律——反思修正——解决问题。它的特征:第一,“发现法〞是处于较低层次的一种“创造〞活动,而“再创造〞是一种高层次的创造活动,它贯穿在整个数学教学过程中;第二,“发现法〞教学中,学生学习任务就是让学生去发现这些一个又一个客体,而“再创造〞教学的根底是数学现实理论,认为数学学习是由客观世界与学生头脑中的“数学现实〞互相作用融为一体的过程,数学学习的任务是不断丰富和提高学生所拥有的“数学现实〞。整个过程,学生始终处在主动、积极、创造的状态之中,使得学生的主体性得到充分发挥。掌握“再创造〞教学模式在小学数学教学中的运用以及它的主要优点。5.范例教学——“范例教学〞是指在一组特定的知识中选出有代表性的、最根底的、本质的实例〔或称范例〕,通过这些实例内容的讲授,使学生掌握同一类知识的规律,举一反三,获得独立思考、独立解决问题的方法。以范例作为传授知识的工具,是范例教学法的主要特点之一。它的理论根底主要是基于“教养性学习〞的教育思想。范例教学过程的一般程序是:以范例说明“个〞的阶段——以范例说明“类〞的阶段——以范例理解规律性的阶段——以范例掌握关于世界和生活的经验阶段。掌握范例教学模式的根本特征以及它在小学数学教学中的运用,即第一,选取的范例要具有较好的示范性,第二,选取的范例要与学生的经验紧密结合。了解它的主要优缺点。本章综合练习:一、名词解释程序教学模式、发现学习理论、探究学习理论、再创造学习理论、范例教学模式。二、填空题1.程序教学是把〔〕,从而较容易地到达学习目标的通过〔〕来实现的一种教学方法,是一种在培养学生的〔〕应用上行之有效的学习方法。2.程序教学要求具备两项条件:其一是〔〕;其二是〔〕。3.以斯金纳为代表的新行为主义者认为学习〔〕的改变,而不是刺激代替,他们认为学习是一个〔〕的过程。4.程序教学模式主要有三种:〔〕。5.直线式程序是指在教学流程中教师把〔〕,每一步一个工程,内容很少。系列的安排〔〕。学生如能做出正确答案,教学机器就能显示正确,并可以启动开关进行第二步学习。6.程序教学模式三种程序模式有根本相同的流程,即〔〕。7.早在古希腊,苏格拉底就主张通过师生间的〔〕,使学生自己发现新知。8.发现学习就是〔〕一种方法。9.发现教学模式的根本流程是〔〕。10.发现教学模式的主要特征有三个方面,即〔〕。11.探究教学的根本流程是〔〕。12.数学化是指〔〕的过程。13.再创造教学模式的根本流程应该是〔〕。14.“范例教学〞是指〔〕的方法,以〔〕的工具,是范例教学法的主要特点之一。三、判断题1.程序教学模式的本质是一种“行为取向〞的教学设计模式和适用于个别化教学的自动教学的方式。2.布鲁纳的完形说观点进一步肯定了刺激与反响之间的直接联系。3.探究学习就是让学生接受教师思考好的现成的结论。4.探究学习与发现学习在哲学概念上是一致的。5.再创造学习理论是对探究式和发现式学习理论的一种开展。四、简答题1.程序教学在小学数学教学中的应用是什么?程序教学的主要优点是什么?2.发现学习理论有何缺乏之处?3.探究学习最早源自于何处?4.发现法学习法与再创造学习法有何不同?5.解释范例教学理论问世的深刻社会背景。6.什么是教养性学习?五、论述题1.什么是程序教学?其理论根底与根本的程序是什么?并尝试对程序教学作简要的分析。2.什么是发现学习?其理论根底与根本的程序是什么?并尝试对发现学习作简要的分析。3.什么是探究学习?其理论根底与根本的程序是什么?并尝试对探究学习作简要的分析。4.什么是再创造学习?其理论根底与根本的程序是什么?并尝试对再创造学习作简要的分析。5.什么是范例学习?其理论根底与根本的程序是什么?并尝试对范例学习作简要的分析。考前须知:本章综合练习、文字教材上的练习以及形成性考核作业册上的练习都将作为期终考试内容。第六章小学数学学习的课堂分析本章主要内容:〔1〕了解小学数学课堂教学的根本过程和根本要素;〔2〕掌握小学数学课堂教学中教师与学生的主要行为特征,初步学会分析影响这些行为的因素分析;〔3〕知道在小学数学课堂中,教与学活动的一些根本要素、根本结构和根本组织形式。本章核心概念:课堂教学的本质、认知建构过程、转变学习方式、学生参与、师生相互作用、课堂活动的结构、课堂活动的形式。本章重点知识:小学数学课堂教学的本质、课堂学习中认知建构的过程、课堂活动中的学生参与、小学数学课堂活动的主要结构和组织形式。本章重点能力:〔1〕能用例子阐述并解释小学数学课堂教学的过程本质;〔2〕能举例说明并解释小学数学课堂活动的心理特征;〔3〕能对给出的案例分析传统小学数学学习方式的弊端,并提出相应措施;〔3〕能举例说明学习方式多样化的含义和价值;〔4〕能举例说明小学数学课堂教学的不同活动结构和不同的组织形式。本章重点提示(1)对课堂教学的本质认识要从理解出发,抓住几个关键的概念:活动过程、相互作用、共同开展;(2)对小学生数学认知结构过程的理解,可以从三个环节的作用出发,抓住影响这三个环节活动的主要因素来分析;(3)对数学的严谨性特征的认识,抓住其“唯一性〞和“精确自然结构〞两个关键性质;(4)对转变学习方式的认识,主要包含“为什么要倡导转变学习方式〞和“转变学习方式的含义〞两个角度的内容;(5)对学生参与的认识,主要包含“学生三种参与的含义〞和“学生三种参与之间的关系〞两个角度的内容;(6)对师生相互作用的认识,主要抓住对课堂学习中的师生相互作用方式的理解;(7)对课堂活动的结构或课堂活动的形式的认识,重点放在理解和掌握不同结构或形式的根本流程上。本章重点辅导:1.小学数学课堂教学的本质特征——所谓小学数学课堂教学,就是指在一定的时间和空间内,学生在教师由方案的组织和引导下,获得数学意义的理解、能力的建构与情感开展的活动。它的教学过程有以下几个特征,即数学课堂教学过程就是数学活动的过程、数学课堂教学过程就是师生以数学问题为媒介的相互作用过程、数学课堂教学过程就是师生共同开展的过程。小学数学课堂学习的心理特征包括建构数学认知过程、形成数学能力的过程、开展情感的过程。传统的小学数学学习方式特点包括客体性、单一性、接受性、封闭性。转变小学数学学习方式的原因是这种被动接受为主的学习方式不仅给学生的学习带来了沉重的学习负担,而且也不适应小学数学的促进儿童数学素养开展的价值追求。转变学习方式要从几个方面实现转变:变单一形式为多样化形式、变单纯接受为探索发现与引导接受相结合、变概念获得活动为概念获得活动与问题解决活动相结合、变个体学习为独立探索与团队合作相结合。2.小学数学课堂教学中的师生参与——所谓学生参与主要就是指学生在课堂学习过程中的身心投入,它反映的是学生在课堂学习过程中的心理活动方式和行为努力的程度。它分为行为参与、情感参与和认知参与。它们的关系是,情感参与通过参与度来表现,但不一定和参与度有必然的联系,这与学生参与学习的动力因素〔如家长的外加指令等〕相关;而行为参与的方式那么是影响认知参与的主要因素,但认知参与策略与参与度那么无显著的相关性。掌握课堂学习中学生的参与对于学习结果有重要影响以及它主要表现哪几个方面。课堂教学中教师的角色与作用主要表现在以下几个方面,教师在课堂学习活动中起设计和组织作用、教师在课堂教学活动中起引导、鼓励和促进的作用、教师在课堂学习活动中起诊断和导向的作用。教师参与课堂教学的根本形式为设计者、参与者、合作者三种身份参与课堂教学过程。课堂学习中的师生影响可以这样来理解,教师的知识和信念决定了教师的决策,教师的决策决定了课堂学习模式,而课堂学习模式又影响了学生的认知水平与途径,从而决定了学生的学习与行为表现;反过来,学生的行为反作用于教师的决策以及他们自身的认知与学习。课堂学习中的师生相互作用方式有教师的主导作用通过切合的引导予以表达、对话是小学数学课堂学习的根本交互形式、课堂教学是一个人际之间充分交流与分享的过程。3.小学数学课堂学习活动的根本构成——课堂活动的根本构成要素包含三个要素,即教学活动的共同体、教学活动的对象、教学活动的过程特征。课堂活动的主要矛盾是,首先是由“教学活动的共同体〞要素引出了教师的主导性与学生的主体性之间的矛盾;其二是由“教学活动的对象〞特征要素引出了学生认知的心理特点与数学学科特点之间的矛盾;第三是由“教学活动的过程特征〞要素引出了儿童数学与成人数学之间的矛盾。课堂学习活动的根本结构主要有以问题解决为主线的课堂学习的活动结构、以信息探索为主线的课堂教学的活动结构、以实验操作为主线的课堂教学的活动结构、以自学尝试为主线的课堂教学的活动结构、以小组讨论为主线的课堂教学的活动结构。本章综合练习:一、名词解释课堂教学的本质、认知建构过程、转变学习方式、学生参与、师生相互作用、课堂活动的结构、课堂活动的形式。二、填空题1.小学数学课堂教学有〔〕的特征。2.小学数学课堂学习的心理特征包括〔〕。3.传统的小学数学学习方式特点包括〔〕。4.儿童在课堂学习过程中情感的投入包括了〔〕等因素,这些因素对〔〕起到刺激、定向和调节的作用。5.课堂教学中教师的角色与作用主要表现在〔〕三个方面。6.〔〕是构成教师与学生在课堂学习中相互作用的根本要素。7.现代教学研究说明,教师是课堂教学活动的主导,而学生那么是课堂教学活动的主体,他们之间是按〔〕来现实相互作用的。8.课堂活动的根本构成要素包含〔〕三个要素。9.课堂活动的主要矛盾是〔〕。10.课堂学习活动的根本结构主要有〔〕五种。三、判断题1.小学数学课堂学习的过程是一个简单的知识摄取的过程。2.被动接受为主的传统小学数学学习方式不仅给学生的学习带来了沉重的学习负担,而且也不适应小学数学的促进儿童数学素养开展的价值追求。3.课堂教学活动的本质就是教师向学生传授知识的单向过程。4.在同样的课程和同样的教学组织过程中,不同的学生的行为参与程度和行为参与方式是一样的。5.教师以设计者、参与者、合作者三种身份参与课堂教学过程。6.构成课堂活动的要素中,人是次要因素。四、简答题1.试用具体事例说明传统的小学数学学习方式的局限性。2.倡导学习方式的多样化,主要取决于哪些要素?3.转变传统的学习方式要从哪几个方面来实现?4.试解析行为参与、情感参与和认知参与的含义。5.分析课堂学习中的师生之间相互影响。6.试分析课堂活动的主要矛盾。五、论述题1.小学数学课堂教学有哪些意义和特征?尝试分析在小学数学课堂中教师与学生的参与方式和参与的价值。2.能否通过小学数学的临床观察,来分析小学数学课堂中教师与学生是如何相互作用的?3.小学数学课堂教学有哪些根本的活动环节?并尝试运用临床观察的方法来分析一些小学数学课堂中的根本活动结构或根本组织形式。考前须知:本章综合练习、文字教材上的练习以及形成性考核作业册上的练习都将作为期终考试内容。第二讲第七章小学数学教学组织及其方法本章主要内容:〔1〕理解教学策略,掌握教学策略的价值,知道构建教学策略的依据和原那么;〔2〕掌握教学策略的根本类型,知道交互式问题解决、探索-发现式、Handson活动等利于促进学生数学素养开展的行之有效的策略;〔3〕理解教学方法及其教学方法多样化的含义,知道教学方法的根本类型及其特点,掌握常见的教学方法及其特点;〔4〕理解教学手段及其教学手段整体优化的含义,掌握常见的小学数学教学手段。本章核心概念:教学策略、构建教学策略的依据与原那么、照本宣科型策略、简单对话型策略和思维交互型策略、现代小学数学教学策略特点、交互式问题解决策略、探索-发现式策略、Handson活动策略、教学方法、提示型的教学方法、问题解决型教学方法和自主型的教学方法、表达式讲解法、启发式谈话法、演示法、实验法、练习法、教学手段、操作材料、辅助学具、电化设备、计算机技术。本章重点知识:教学策略及其类型、现代小学数学教学策略的根本特点、利于促进学生数学素养开展的行之有效的教学策略举例、不同类型教学方法意义、特点、方式或注意点、教学方法多样化的意义、教学方法的选择。本章重点能力:〔1〕能对给定的课堂教学实例,大致辨识出其教学策略的根本类型,或根据给定的教学策略类型,设计一个小学数学教学的组织过程;〔2〕能对给定的课堂教学实例,大致辨识出其教学方法的根本类型,或根据给定的教学方法类型,设计一个小学数学教学的组织过程;〔3〕能对给定的课堂教学实例,大致辨识出其具体运用的教学方法,或根据给定的具体的教学方法,设计一个小学数学教学的组织片段;〔4〕能举例说明教学方法多样性的意义;〔5〕能举例说明哪些因素影响教学方法的选择与组合,又是怎样影响教学方法的选择与组合的。本章重点提示:〔1〕对三种不同类型教学策略的学习,重点抓住其根本含义和根本特点;〔2〕对现代小学数学教学策略特点的认识,重点抓住“以情境呈现任务〞、“任务驱动探索〞、“以探索组织学习〞这样一些特点;〔3〕对提示型的教学方法的认识,重点抓住其根本含义、特点以及主要形式;〔4〕对问题解决型教学方法的认识,重点抓住其根本含义、特点以及要注意的问题;〔5〕对自主型的教学方法的认识重点抓住其根本含义、特点以及要注意的问题;〔6〕对常见小学数学教学方法的认识,重点抓住其根本含义以及要注意的问题;〔7〕对教学方法多样化的认识,重点抓住其主要表达的四个方面;〔8〕对与教学方法的选择,重点抓住所依据的四个变量,它们是如何影响教学方法的选择与组合的。本章重点辅导:1.小学数学课堂学习中的教学策略——教学策略当然就是指教师在课堂学习的组织过程中的一种指导行为方式与方法抉择或创设的方略。构建教学策略对课堂教学组织的重大意义在于它是教师确定教学组织过程的依据、有助于抉择有效合理的教学方法、是影响学生学习方式选择的重要因素、是评价教师教学行为的一个重要依据。构建小学数学教学策略的主要依据有对小学数学教育价值追求的根本认识、对儿童学习数学过程的认识和理解、对课堂学习过程的理解和诠释。教学策略建构依赖于准备原那么、活动原那么、主动参与的原那么、兴趣性原那么、个别适应的原那么。教学策略的根本类型有“照本宣科策略〞、“简单对话策略〞与“思维交互策略〞。现代课堂学习中教学组织策略特点是运用情境的方式呈现学习任务、数学活动是以任务来驱动的、探索是数学活动的重要形式。2.小学数学课堂学习中的教学组织与方法——教学组织主要有三种不同的根本类型,即接受型的教学组织、问题解决型教学组织、自主型的教学组织。常见的教学方法有表达式讲解法、启发式谈话法、演示法、实验法、练习法。具体来说,表达式讲解法三点是必须要引起注意的:第一,教师的讲解不等于简单的教师“讲〞而学生知识被动的“听〞;第二,教师的讲解要善于“设疑〞和“质疑〞,这样才能充分地引起学生的思考;第三,教师的讲解不能仅仅从概念出发,应最大限度地从学生的经验出发去创设良好有效的情境,来帮助学生探索和思考。启发式谈话法有四点是必须要引起注意的:第一,谈话法是以教师的问题引导为基点的,教师的问题应具有明确、有思考性、能激起学生探究的欲望等特征;第二,师生的对话是以理解为核心的,因此,不必强求学生表述的语言必须与学术性对话的一致性,只要学生的表述清晰可懂,教师就不要给予太多的干预和控制;第三,切忌将这种对话理解为就是“一一对话〞的活动,使某个对话活动发生时,成为了教师与学生的两个人行为,其他人那么成为事不关己的“听众〞;第四,问题的思考性决定了在教师的提问与学生的答复之间要留有一个的时间空间,缺乏思考性的对话是一种无效的学习行为。演示法有三点是必须要引起注意的:第一,教师的呈示或演示要有典型性,使对象的特征能明显地显现出来;第二,教师在呈示或演示之前,要给学生明确具体的观察和思考的任务,让学生带着问题去观察;第三,在呈示或演示的过程中,往往会伴随着对话,而这种对话不是简单的“是〞与“不是〞,而是具有一定思考性的。实验法有两点是必须要引起注意的:第一,无论是验证性实验还是探索性实验,都是学生自己的主体性的行为,因此,对于学生操作的方法、过程和手段,要留有一定的开放性,以适应不同学生学习水平、学习方式的习惯和学习策略等的差异性;第二,无论是验证性实验还是探索性实验,都必须引导学生将观察和思考的注意指向操作的过程,而不要一味地指向结论。练习法要注意两点:第一,科学的练习不同于机械的重复。即不能将练习法简单的理解为就是大运动量的、机械式的“题海战〞,而是要讲究科学性的训练。第二,科学的练习应具有明确的练习目标。教学方法的多样化是指教学方法不是一个不变的程序结构、不同的学习任务和目标可以有多样化的教学方法、同样的教学方法可以有不同的行为方式、教学方法在一堂课中往往是交替使用的。教学方法的抉择受到教师对数学教育价值的理解、教师对教学目标确实认、教师对学生特点的认识、教师自身的个性特点的制约。掌握教学方法与促进儿童的学习之间关系。教学手段的价值有帮助学生更好的获得对知识的理解、支持学生对知识的探索、加强师生在课堂上的交互作用。常见的教学手段有操作材料、辅助学具、电化设备、计算机技术等四类。教学手段的抉择与运用,主要取决于如下一些变量:有利于学生的动机激发、有利于学生的探索于发现、有利于学生对知识的理解。本章综合练习:一、名词解释教学策略、构建教学策略的依据与原那么、照本宣科型策略、简单对话型策略和思维交互型策略、现代小学数学教学策略特点、交互式问题解决策略、探索-发现式策略、Handson活动策略、教学方法、提示型的教学方法、问题解决型教学方法和自主型的教学方法、表达式讲解法、启发式谈话法、演示法、实验法、练习法、教学手段、操作材料、辅助学具、电化设备、计算机技术。二、填空题1.交互式问题解决策略,主要属于一种〔〕的教学策略。其主要特点就是()之间的话语或行为的对话,使不同的(),从而促进学生()的学习。2.Handson活动策略注重的是对〔〕的培养。其根本的价值观是强调从〔〕的经历,使儿童在动手做的过程中理解〔〕,获得情感体验。3.接受型的教学组织主要包含着这样一些具体的行为有〔〕。4.教学组织主要有三种不同的根本类型,即〔〕。5.常见的教学方法有〔〕。6.教学方法的抉择受到〔〕的制约。7.良好的教学方法应该是充分激发〔〕,充分鼓励〔〕的一种程序结构。8.教学手段是指〔〕,是在〔〕的媒体。三、判断题1.同一种策略可以有不同的方法,反之,同一种方法可以属于不同的策略。2.探索-发现式教学策略,也是属于一种思维交互型的教学策略,但是,这种教学策略可能更强调的是教师作为主导作用的探究行为。3.自主型的教学组织的最大特征就是在课堂学习的过程中,教师的控制性被大大地增加了,学生的自我学习活动在课堂学习中占了次要地位。4.研究说明,儿童对某一个数学知识,从认识到掌握,通常仅靠一个“例题〞的“剖析〞就能形成清晰和稳定的认知结构。5.教学方法是一个绝对稳定的程序结构,不受课程目标的变革。6.教学手段与教学方法不同,它通常是与“物〞联系在一起德,具有使用材料的特征。四、简答题1.小学数学学习中Handson教学策略的根本特征是什么?2.问题解决型教学组织的缺陷是什么?要注意什么?3.自主型的教学组织的特点是什么?它的局限性是什么?应注意什么?4.教学方法的多样化说明了什么?5.教学方法多样化的内涵是什么?6.试分析教学方法与促进儿童的学习之间关系。7.教学手段的价值是什么?五、论述题1.什么是小学数学教学的组织策略?分析和建构小学数学教学的组织策略有哪些价值?2.从开展学生的数学素养角度看,小学数学教学应当遵循哪些根本的原那么?3.小学数学有哪些根本的教学方法类型?这些类型都有哪些根本的特点?尝试从一个临床案例来分析小学数学教学方法的多样化。考前须知:本章综合练习、文字教材上的练习以及形成性考核作业册上的练习都将作为期终考试内容。第八章小学数学学习评价本章主要内容:〔1〕知道小学数学学习评价的意义、目的和价值,了解并掌握小学数学学习评价的根本分类及其它们不同的特点;〔2〕知道小学数学学业评价的目的与原那么,了解并掌握现代小学数学学业评价的主要类型与根本策略;〔3〕知道现代小学数学课堂教学评价的根本原那么与主要指标,了解并掌握。本章核心概念:学习评价、形成性评价和总结性评价、获得性评价和表现性评价、常模参照评价、目标参照评价和个性特征参照评价、临床观察法、交流访谈法、随堂测验法。本章重点知识:学习评价、学业评价以及课堂教学评价的意义和价值、学习评价、学业评价以及课堂教学评价的不同类型及其特征、学业评价与课堂教学评价的原那么、多样化的学业评价策略。本章重点能力:〔1〕能用例子分析,目标取向、过程取向以及主体取向等评价的差异性;〔2〕能举例说明总结性评价与形成性评价、获得性评价与表现性评价等的根本差异,并能做相应的评价任务的设计;〔3〕能用学业评价的多样化和多样化的理念,设计相应的促进学生开展的评价任务,并做出相应的解释;〔4〕能举例说明临床观察法、交流访谈法和随堂测验法等课堂教学评价方法的差异。本章重点提示:〔1〕对小学数学学习评价的理解,要重点抓住评价的目的及其根本的价值,并能从取向来分别解释三种不同类型的评价;〔2〕对小学数学学业评价的理解,要重点抓住学业评价的目的和原那么,并从多样化的评价方式角度,理解各种不同类型的学业评价;〔3〕对现代小学数学学业评价的认识,重点抓住“过程性〞、“开展性〞和“表现性〞这三种根本的策略;〔4〕对小学数学课堂教学评价的理解,重点抓住评价的价值取向和根本原那么,并且运用实践尝试的方式去理解和掌握“临床观察〞、“交流访谈〞、“随堂测验〞以及“研讨解析〞等四种评价方法。本章重点辅导:1.小学数学学习评价概述——所谓学习的评价就是对学习行为的价值做出判断的过程,它主要包含着对学习过程的评价以及对学习结果的评价两个方面。一般说来,测量是评价的重要手段,评价是以测量的数据为根底的,评价就是对测量的数据的一个解释的过程。小学数学学习评价的目的主要包括:第一,对小学数学学习过程中教师与学生的活动质量判断,从而改善他们的行为方式和行为策略;第二,对学生的数学学习成就和进步进行判断,从而鼓励他们进一步参与到数学的学习过程之中;第三,为教师与学生参与课堂学习提供诸如行为方式、策略以及手段等方面的信息反响,从而帮助他们随时修正或开展;第四,使教师与学生能进一步明确数学学习的预期目标,并共同为到达这个目标而努力;第五,促进教师对儿童的学习方式、行为方式以及情感的认识,改善儿童对数学的价值、对学习的态度以及参与学习的情感。学习评价的价值具有导向价值、反响价值、诊断价值、鼓励价值、研究价值。学习评价的分类有按评价的取向角度分,即包括“目标取向的评价〞、“过程取向的评价〞与“主体取向的评价〞等三类、按评价的方法论角度划分,即包括学习评价大致可以分为“量化评价〞和“质性评价〞。2.儿童数学学业的评估——学业评价,就是指学生的学习成就的评价。小学数学的学业评价目的包括第一,为学生了解自己的数学学习提供反响的信息,以便让学生通过反思自己的学习过程来调整自己的学习的行为、情感和策略的参与水平;第二,帮助学生改善对数学以及数学学习的认识,进一步了解数学以及数学学习的价值,开展自己的数学素养;第三,帮助教师进一步了解儿童对数学的态度和情感,了解儿童的数学学习方式的多样性和差异性,了解儿童数学和数学学习的水平,了解儿童形成数学自信心的过程,从而改善教师的教学组织;第四,帮助教师与学生一起进一步完善数学课程,调整课程方案,生成新的学习。学业评估的原那么包括开展性原那么、过程性原那么、过程性原那么。学业评价内容包含对数学的价值的了解、数学知识意义的建构、数学技能的形成、数学问题解决能力水平、数学思想与方法的获得、数学学习的态度与情感、数学学习的自信心。多样化的学习评价包括从评价的功能角度看包含形成性评价和总结性评价、从评价的取向与追求看包含获得性评价和表现性评价、从评价的参照看包含常模参照评价,目标参照评价和个性特征参照评价。掌握构建促进学生开展的评价策略。3.小学数学课堂教学的评价——课堂教学评价至少应包含着如下一些目的和意义,即第一,有利于学生的全面开展。因为小学数学课堂教学评价的一个根本目标,就是通过临床的评价与诊断,来帮助教师积极自主的去构建新的教学策略,不断调整教学的组织方法与过程,以促进学生数学素养的开展。第二,有利于教师的专业开展。因为小学数学课堂教学评价主体就是教师自己,是教师对课堂教学过程与行为的批判刑的反思,是教师与同行和专家的交流与分享的过程,因此,能有效的促进教师的专业开展。小学数学课堂教学的根本要素由课堂活动是由教师、学生、教材与环境这四个要素所构成。小学数学课堂教学评价的根本原那么有注重目标达成原那么、注重行为表现原那么、注重效果全面原那么。课堂教学评价的根本方法有临床观察法、交流访谈法、随堂测验法、研讨解析法。本章综合练习:一、名词解释学习评价、形成性评价和总结性评价、获得性评价和表现性评价、常模参照评价、目标参照评价和个性特征参照评价、临床观察法、交流访谈法、随堂测验法。二、填空题1.所谓评价,其实质就是〔〕。2.一般说来,测量是评价的重要手段,评价是以〔〕为根底的,评价就是对〔〕的一个解释的过程。3.学习评价的价值包括〔〕。4.所谓目标取向的评价,就是将评价视作为〔〕,因此,〔〕就成为了评价的一个唯一的标准。5.所谓过程取向的评价,就是将〔〕都纳入到评价的范围之内,因而,评价的过程也具有了价值。因为它6.所谓主体取向的评价,就是将评价是看作〔〕的过程,强调不仅是〔〕,同时〔〕也是评价的主体。7.量化的评价,其哲学根底就是〔〕,它强调的是从〔〕出发,来推断或判断某一对象的成效。其特点是〔〕的目标,并将这种目标通过〔〕的方式陈述出来,然后再以〔〕的表述方式来刻画某一个体与这个目标之间的距离。8.学业评估的原那么包括〔〕。9.学业评价内容包含〔〕。10.形成性评价是一种以〔〕的评价,它主要是〔〕的学习过程之中的。11.总结性评价是一种以〔〕的评价,它通常是发生在〔〕之后的,所以又是也被称为“结果评价〞。12.所谓随堂测验法就是在某个教学活动结束之后,评价者当堂可以随机的或选择性的抽取假设干的学生,〔〕进行测试验。13.研讨解析法的特点是〔〕。三、判断题1.今天的数学教育,追求的是学生数学技能的培养,因此,题海战术仍然是一个有效的教学策略。2.目标取向评价的特点就是将评价的操作过程以“质〞的刻画方式而复杂化了。3.过程取向评价强调了评价者与被评价者的交互作用,强调了评价者与评价情境的交互作用。4.主体取向的评价强调的是在评价过程中,每一个主体的反思的意识与能力,强调评价价值的多元性和评价方法的多样化。5.所谓质性的评价,其哲学根底就是科学实证主义,它强调的是评价的主体取向。6.不同的评价方式,因其取向的不同,那么评价所追求的主要目标是有差异的。7.如果说形成性评价是一种阶段性和过程性的诊断的话,那么,总结性评价就是一种系统性的和终结性的诊断。8.过程性评价其本质就是一种以关注学习过程为取向的评价,它是一种具体的评价方式。9.所谓临床观察法,实际上是借助于社会学中人种志研究的一种质性的课堂教学研究方法。四、简答题1.小学数学学习评价的目的主要包括哪些?2.对评价方法论的两种方法量化评价和质性评价作分析。3.小学数学的学业评价目的包括哪些方面?4.试对三种评价参照作分析。5.过程性评价是一种什么样的评价?它的特点是什么?6.开展性评价是一种什么样的评价?它的特点是什么?7.表现性评价是一种什么样的评价?它的特点是什么?8.要构建小学数学课堂教学的评价的根本方法,要弄清哪两个问题?9.交流访谈法的特点是什么?10.试对临床观察法作解释。11.运用临床观察法的评价方式应当注意哪些问题?五、论述题1.学习评价有哪些不同的类型?这些不同类型的评价各有哪些根本的特点?2.小学数学学业评价的根本目的和根本原那么有哪些?从多样化的角度看,小学数学学业评价有哪些不同的类型?这些不同类型的评价方式各有哪些根本的特点?3.小学数学课堂教学评价有哪些根本的方法?这些方法的特点分别是什么?运用这些方法要注意哪些问题?考前须知:本章综合练习、文字教材上的练习以及形成性考核作业册上的练习都将作为期终考试内容。第九章小学数学的概念学习本章主要内容:〔1〕了解小学数学概念的性质及其特点;〔2〕掌握小学数学概念教学的根本策略;〔3〕懂得如何在小学数学概念教学中开展儿童获取数学概念的能力。本章核心概念:概念的含义、特征与根本结构、概念的抽象、数学概念及其呈现方式、概念形成与概念同化。本章重点知识:小学数学概念抽象的根本过程、小学数学概念的呈现方式、小学数学概念在学习上的主要特征、儿童形成数学概念的主要途径和根本过程、儿童获得概念能力开展的根本特点及其影响儿童概念学习的主要因素、小学数学概念教学的主要策略、构建数学概念能力的要素及其开展儿童构建数学概念能力的途径。本章重点能力:〔1〕能用实例阐述并解释小学数学概念的根本结构;〔2〕能举例分析并解释小学数学概念的强抽象或弱抽象过程和意义;(3)能用实例具体分析小学数学概念的不同呈现方式及其余儿童数学学习的联系;(4)能用实例具体分析儿童学习概念的根本过程以及儿童形成数学概念的主要心理特征;(5)能分别用举例说明在“引入概念〞、“建立概念〞和“稳固和运用概念〞等阶段中,小学数学概念教学组织的一些主要的策略;(6)能用实例分析和说明儿童构建数学概念能力的要素及其开展儿童构建数学概念能力的根本途径。本章重点提示:〔1〕对概念的认识,重点抓住概念的内涵和外延及其它们之间的反向对应关系;〔2〕对抽象的认识,要先弄清楚概念的属种关系或上、下位关系,在此根底上了解强抽象与弱抽象;〔3〕对数学概念的认识,要先从数学概念形成的两种途径来了解数学概念的根本分类,然后再在理解数学概念的两种根本呈现方式去了解小学数学概念的一些根本特征;〔4〕对概念形成与语概念同化的认识,要先知道其与数学概念形成的两种途径有关联,然后抓住它们的根本过程;〔5〕对小学数学概念学习特征的认识,可以从两个方面加以理解,一个方面是小学数学概念在学习上的特征,另一个方面是儿童获得概念能力开展的根本特点;〔6〕对小学数学概念教学的主要策略的认识,应当分别从数学概念学习的三个不同阶段出发,借助于相应的实例来帮助理解;〔7〕对开展儿童构建数学概念能力途径的认识,可以借助以相应的实例分析来帮助理解。本章重点辅导:1.小学数学概念学习的根本分析——概念是思维的根本形式之一,是事物的本质属性在人脑中的反映。概念具有这样的特征:第一,概念是对两种以上对象的共同特征的概括;第二,概念主要是以词的形式来标志的,概念与词汇实际上是内容与形式的关系,但它们并不都是一一对应的关系;第三,概念是抽象与概括的结果;第四,概念就是对经验的加工。概念的结构,就是指构成概念的内在属性,这个内在属性就是概念的内涵与外延。反映事物与对象的本质属性的总和称之为概念的内涵,它是概念的质的反映,表示的是概念反映的是什么样的事物。反映事物与对象本质属性的类的称之为概念的外延,它是概念的量的反映,表示的是概念反映的是哪些事物。概念的内涵与外延具有反向对应的关系。也就是说,如果我们扩大内涵,那么会缩小其外延;反之,如果我们扩大外延,就会缩小其内涵。概念通过抽象而获得,抽象是揭示概念内涵的思维方法。概念的分类规那么有:分类必须是相称的、分类所得各个属概念应互相排斥、每次分类应按同一标准进行、分类不能越级进行。数学概念就是揭示现实世界的数量关系〔形式〕和空间形式〔关系〕的本质属性的思维形式.。数学概念的形成有两种途径。一种是直接从现实世界客观事物的数量关系或空间形式的经验并经过抽象而得到的;第二种是在已有的数学概念根底上,经过进一步的抽象、推理、概括等思维活动而得到的。数学概念至少有如下一些特征:第一,精确性。数学概念是由词语或符号的定义所构成的,而这些词语或符号具有唯一性。因此,数学概念具有精确性,即在任何情况下,这些词语或符号都反映同一个对象的同一个本质属性,不应有多重理解性,也不应具有概念的替代现象。第二,抽象性。数学概念往往是“抽象的抽象〞,即是一些客观对象的“概括的概括〞,反映的是一类对象的本质属性。数学概念的呈现方式有不定义方式和定义方式。不定义方式有直接运用、语言描述、图形描述、枚举;定义方式有集合定义、发生定义、外延定义、约定式定义、关系定义、公理化定义。数学概念的主要分类有按数学概念的来源分、按数学概念所反映的对象特征看。小学数学概念在学习上的特征有在数学概念组织上的特征、在数学概念获得上的特征、在数学概念呈现上的特征。儿童形成数学概念的主要特征是一个通过内化到达守恒的过程,形成数学概念的主要途径是通过概念形成和概念同化这两个根本的途径来实现的。概念形成的主要过程为:第一,感知具体对象阶段;第二,尝试建立表象阶段、第三,抽象本质属性阶段、符号表征阶段、概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论