人教版八年级数学上册15.2.3整数指数幂_第1页
人教版八年级数学上册15.2.3整数指数幂_第2页
人教版八年级数学上册15.2.3整数指数幂_第3页
人教版八年级数学上册15.2.3整数指数幂_第4页
人教版八年级数学上册15.2.3整数指数幂_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

复习回顾我们知道,当n是正整数时,n个正整数指数幂还有以下运算性质。第一页第二页,共41页。正整数指数幂有以下运算性质:(6)0指数幂的运算:当a≠0时,a0=1。复习(1)同底数幂的乘法:am·an=am+n(a≠0m、n为正整数)(2)幂的乘方:(am)n=amn(a≠0m、n为正整数)(3)积的乘方:(ab)n=anbn

(a,b≠0m、n为正整数)(4)同底数幂的除法:am÷an=am-n(a≠0m、n为正整数且m>n)(5)分式的乘方:

(b≠0,n是正整数)第二页第三页,共41页。当m=n时,当m<n时,

am中指数m可以是负整数吗?如果可以,那么负整数指数幂am表示什么?思考第三页第四页,共41页。属于分式第四页第五页,共41页。归纳一般地,当n是正整数时,这就是说,a-n(a≠0)是an的倒数。引入负整数指数幂后,指数的取值范围就扩大到全体整数。第五页第六页,共41页。练习(1)32=___,30=__,3-2=____;(2)(-3)2=___,(-3)0=__,(-3)-2=_____;(3)b2=___,b0=__,b-2=____(b≠0).1、填空:91911b2第六页第七页,共41页。看谁做得快:2.填空:

1

a(2)1

3-(3)1

16(6)4x

y(1)1125(5)=-1)(xy(4)()=--24第七页第八页,共41页。3、计算:第八页第九页,共41页。解:(1)20=1第九页第十页,共41页。例2、把下列各式转化为只含有正整数指数幂的形式1、a-32、x3y-23、2(m+n)-24、5、6、第十页第十一页,共41页。例3、利用负整指数幂把下列各式化成不含分母的式子1、2、3、第十一页第十二页,共41页。引入负整数指数和0指数后,运算性质am÷an=am-n(a≠0,m,n是正整数,m>n)可以扩大到m,n是全体整数。引入负整数指数和0指数后,运算性质am·an=am+n(m,n是正整数)能否扩大到m,n是任意整数的情形?思考第十二页第十三页,共41页。观察第十三页第十四页,共41页。归纳

am·an=am+n这条性质对于m,n是任意整数的情形仍然适用.

类似于上面的观察,可以进一步用负整数指数幂或0指数幂,对于前面提到的其他正整数指数幂的运算性质进行试验,看这些性质在整数指数幂范围内是否还适用。事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质也推广到整数指数幂。第十四页第十五页,共41页。(1)am·an=am+n(a≠0)(2)(am)n=amn(a≠0)(3)(ab)n=anbn(a,b≠0)(4)am÷an=am-n(a≠0)(5)(b≠0)当a≠0时,a0=1。(6)a-3·a-9=(a-3)2=(ab)-3=a-3÷a-5=整数指数幂的所有运算性质用于指数是负数和零的幂的运算也是完全成立的第十五页第十六页,共41页。=第十六页第十七页,共41页。=第十七页第十八页,共41页。=第十八页第十九页,共41页。=总结:请说出上面的规律第十九页第二十页,共41页。=根据规律把下面式子变为分子,分母中不含负指数第二十页第二十一页,共41页。=根据规律把下面式子变为分子,分母中不含负指数第二十一页第二十二页,共41页。=根据规律把下面式子变为分子,分母中不含负指数第二十二页第二十三页,共41页。例9计算:(1)(2)例题第二十三页第二十四页,共41页。(1)(2)解:原式解:原式课堂练习第二十四页第二十五页,共41页。巩固练习第二十五页第二十六页,共41页。巩固练习第二十六页第二十七页,共41页。下列等式是否正确?为什么?(1)am÷an=am·a-n第二十七页第二十八页,共41页。(1)∵am÷an=am-n=am+(-n)=am·a-n解:∴am÷an=am·a-n两个等式都正确。注:负指数幂的引入可以使除法转化为乘法。第二十八页第二十九页,共41页。题组训练一第二十九页第三十页,共41页。科学记数法我们已经知道,一些较大的数适合用科学记数法表示。例如,光速约为3×108米/秒,太阳半径约为6.96×105千米。有了负整数指数幂后,小于1的正数也可以用科学记数法表示。例如,0.001=10-3,0.000257=2.57×10-4.第三十页第三十一页,共41页。即小于1的正数可以用科学记数法表示为a×10-n的形式,其中a是整数数位只要一位的正数,n是正整数。这种形式更便于比较数的大小。例如2.57×10-5显然大于2.57×10-8,前者是后者的103倍。第三十一页第三十二页,共41页。例题

纳米是非常小的长度单位,1纳米=10-9米。把1纳米的物体放在乒乓球上就如同把乒乓球放在地球上。1立方毫米的空间可以放多少个1立方纳米的物体?解:1毫米=10-3米,1纳米=10-9米

1立方毫米的空间可以放1018个1立方纳米的物体。第三十二页第三十三页,共41页。(1)0.005

0.005

0.005=5×10-3小数点原本的位置小数点最后的位置小数点向右移了3位用科学记数法表示下列各数:第三十三页第三十四页,共41页。(2)0.0204

0.0204

0.0204=2.04×10-2小数点原本的位置小数点最后的位置小数点向右移了2位第三十四页第三十五页,共41页。(3)0.00036

0.00036

0.00036=3.6×10-4小数点原本的位置小数点最后的位置小数点向右移了4位第三十五页第三十六页,共41页。观察这三个等式,你能发现10的指数与什么有关呢?

0.00036=3.6×10-4

0.0204=2.04×10-2

0.005=5×10-3规律:

对于一个小于1的正小数,从小数点前的第一个0算起至小数点后第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.归纳第三十六页第三十七页,共41页。1.用科学计数法表示下列数:0.000000001,0.0012,

0.000000345,-0.00003,

0.00000001083780000随堂练习1×10-91.2×10-33.45×10-7-3×10-51.08×10-83.78×106第三十七页第三十八页,共41页。课堂反馈1.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10-5B.0.25×10-6

C.2.5×10-5D.2.5×10-62.一种细菌的直径是0.000015米,用科学记数法表示为__米.3.一只跳蚤的重量约为0.0003千克,用科学记数法表示为3×10-n千克,则n

=___.4.在电子显微镜下测得一个圆球体细胞的直径是5×10-5cm,2×103个这样的细胞排成的细胞链的长是(

).

A.10-2cmB.10-1cmC.10-3cmD.10-4cmD1.5×10-54B第三十八页第三十九页,共41页。对于一个小于1的正小数,如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论