直线的倾斜角与斜率整合_第1页
直线的倾斜角与斜率整合_第2页
直线的倾斜角与斜率整合_第3页
直线的倾斜角与斜率整合_第4页
直线的倾斜角与斜率整合_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

对于平面直角坐标系内的一条直线l,它的位置由哪些条件确定?问题引入问题xyOl第一页第二页,共27页。

我们知道,两点确定一条直线.一点能确定一条直线的位置吗?已知直线l经过点P,直线l的位置能够确定吗?问题引入问题xyOll’l’’P第二页第三页,共27页。

过一点P可以作无数条直线l1,l2,l3,…它们都经过点P(组成一个直线束),这些直线区别在哪里呢?问题引入问题xyOll’l’’P第三页第四页,共27页。

容易看出,它们的倾斜程度不同.怎样描述直线的倾斜程度呢?问题引入问题xyOll’l’’P第四页第五页,共27页。当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角(angleofinclination).xyOl当直线l与x轴平行或重合时,规定它的倾斜角为.直线的倾斜角的取值范围为:直线的倾斜角当直线l与x轴平行或重合时,规定它的倾斜角为.第五页第六页,共27页。直线的倾斜程度与倾斜角有什么关系?平面直角坐标系中每一条直线都有确定的倾斜角,倾斜程度不同的直线有不同的倾斜角,度相同的直线其倾斜角相同.倾斜程xyOl

已知直线上的一个点不能确定一条直线的位置;同样已知直线的倾斜角α.也不能确定一条直线的位置.但是,直线上的一个点和这条直线的倾斜角可以唯一确定一条直线.直线的倾斜角第六页第七页,共27页。

确定平面直角坐标系中一条直线位置的几何要素是:

直线上的一个定点以及它的倾斜角,

二者缺一不可.确定直线的要素xyOlP第七页第八页,共27页。日常生活中,还有没有表示倾斜程度的量?前进量升高量问题引入问题第八页第九页,共27页。问题引入问题前进升高例如,“进2升3”与“进2升2”比较,前者更陡一些,因为坡度(比)第九页第十页,共27页。通常用小写字母k表示,即

一条直线的倾斜角的正切值叫做这条直线的斜率(slope).倾斜角是的直线有斜率吗?倾斜角是的直线的斜率不存在.直线的斜率如果使用“倾斜角”这个概念,那么这里的“坡度(比)”实际就是“倾斜角α的正切”.第十页第十一页,共27页。如:倾斜角时,直线的斜率当为锐角时,如:倾斜角为时,由即这条直线的斜率为直线的斜率倾斜角α不是90°的直线都有斜率,并且倾斜角不同,直线的斜率也不同.因此,可以用斜率表示直线的倾斜程度.第十一页第十二页,共27页。下列哪些说法是正确的()A、任一条直线都有倾斜角,也都有斜率B、直线的倾斜角越大,斜率也越大C、平行于x轴的直线的倾斜角是0或πD、两直线的倾斜角相等,它们的斜率也相等E、两直线的斜率相等,它们的倾斜角也相等F、直线斜率的范围是RG、过原点的直线,斜率越大,越靠近y轴。E、F第十二页第十三页,共27页。练习l1l2l3第十三页第十四页,共27页。已知直线上两点的坐标,如何计算直线的斜率?两点的斜率公式问题给定两点P1(x1,y1),P2(x2,y2),并且x1≠x2,如何计算直线P1P2的斜率k.第十四页第十五页,共27页。当为锐角时,在直角中设直线P1P2的倾斜角为α(α≠90°),当直线P1P2的方向(即从P1指向P2的方向)向上时,过点P1作x轴的平行线,过点P2作y轴的平行线,两线相交于点Q,于是点Q的坐标为(x2,y1).两点的斜率公式第十五页第十六页,共27页。当为钝角时,在直角中两点的斜率公式第十六页第十七页,共27页。同样,当的方向向上时,也有两点的斜率公式第十七页第十八页,共27页。1.已知直线上两点,运用上述公式计算直线斜率时,与两点坐标的顺序有关吗?无关两点的斜率公式思考2.当直线平行于y轴,或与y轴重合时,上述斜率公式还适用吗?为什么?不适用第十八页第十九页,共27页。当直线与轴平行或重合时,上述式子还成立吗?为什么?经过两点的直线的斜率公式为:两点的斜率公式思考成立第十九页第二十页,共27页。3、斜率公式公式的特点:(1)与两点的顺序无关;(2)公式表明,直线对于x轴的倾斜度,可以通过直线上任意两点的坐标来表示,而不需要求出直线的倾斜角;(3)当x1=x2时,公式不适用,此时直线与x轴垂直,α=900第二十页第二十一页,共27页。例1如图,已知,求直线AB,BC,CA的斜率,并判断这些直线的倾斜角是锐角还是钝角.解:直线AB的斜率直线BC的斜率直线CA的斜率由及知,直线AB与CA的倾斜角均为锐角;由知,直线BC的倾斜角为钝角.典型例题第二十一页第二十二页,共27页。例2在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2及-3的直线及.即解:取上某一点为的坐标是,根据斜率公式有:设,则,于是的坐标是.过原点及的直线即为.xy是过原点及的直线,是过原点及的直线,是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论