2024届河南省登封市嵩阳高级中学高一数学第二学期期末检测试题含解析_第1页
2024届河南省登封市嵩阳高级中学高一数学第二学期期末检测试题含解析_第2页
2024届河南省登封市嵩阳高级中学高一数学第二学期期末检测试题含解析_第3页
2024届河南省登封市嵩阳高级中学高一数学第二学期期末检测试题含解析_第4页
2024届河南省登封市嵩阳高级中学高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省登封市嵩阳高级中学高一数学第二学期期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差2.直线过点,且与以为端点的线段总有公共点,则直线斜率的取值范围是()A. B. C. D.3.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度4.已知等比数列的公比为正数,且,则()A. B. C. D.5.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.6.在中,角A,B,C的对边分别为a,b,c.若,则一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰或直角三角形7.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”8.为了了解运动员对志愿者服务质量的意见,打算从1200名运动员中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔为A.40 B.20 C.30 D.129.在正项等比数列中,,则()A. B. C. D.10.已知的三个内角所对的边为,面积为,且,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知三个顶点的坐标分别为,若⊥,则的值是______.12.已知为锐角,则_______.13.已知点在直线上,则的最小值为__________.14.已知数列,,若该数列是减数列,则实数的取值范围是__________.15.某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为.16.已知数列是等比数列,若,,则公比________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校高二年级共有800名学生参加2019年全国高中数学联赛江苏赛区初赛,为了解学生成绩,现随机抽取40名学生的成绩(单位:分),并列成如下表所示的频数分布表:分组频数⑴试估计该年级成绩不低于90分的学生人数;⑵成绩在的5名学生中有3名男生,2名女生,现从中选出2名学生参加访谈,求恰好选中一名男生一名女生的概率.18.某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的化学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,,…,后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:(1)求出这60名学生中化学成绩低于50分的人数;(2)估计高二年级这次考试化学学科及格率(60分以上为及格);(3)从化学成绩不及格的学生中随机调查1人,求他的成绩低于50分的概率.19.已知公差大于零的等差数列满足:.(1)求数列通项公式;(2)记,求数列的前项和.20.已知函数为奇函数.(1)求实数的值并证明函数的单调性;(2)解关于不等式:.21.已知两个定点,动点满足.设动点的轨迹为曲线,直线.(1)求曲线的轨迹方程;(2)若与曲线交于不同的两点,且(为坐标原点),求直线的斜率;(3)若,是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【题目详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【题目点拨】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.2、C【解题分析】

求出,判断当斜率不存在时是否满足题意,满足两数之外;不满足两数之间.【题目详解】,当斜率不存在时满足题意,即【题目点拨】本题主要考查斜率公式的应用,属于基础题.3、C【解题分析】

由,则只需将函数的图象向左平移个单位长度.【题目详解】解:因为,所以要得到函数的图象,只需将函数的图象向左平移个单位长度.故选:C.【题目点拨】本题考查了三角函数图像的平移变换,属基础题.4、D【解题分析】设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,故选D.5、C【解题分析】

根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【题目详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【题目点拨】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.6、D【解题分析】

根据正弦定理得到,计算得到答案.【题目详解】,则,即.故或,即.故选:.【题目点拨】本题考查了根据正弦定理判断三角形形状,意在考查学生的应用能力.7、A【解题分析】

根据不能同时发生的两个事件,叫互斥事件,依次判断.【题目详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;

故选A.【题目点拨】本题考查了互斥事件的定义.是基础题.8、C【解题分析】

根据系统抽样的定义和方法,结合题意可分段的间隔等于个体总数除以样本容量,即可求解.【题目详解】根据系统抽样的定义和方法,结合题意可分段的间隔,故选C.【题目点拨】本题主要考查了系统抽样的定义和方法,其中解答中熟记系统抽样的定义和方法是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解题分析】

结合对数的运算,得到,即可求解.【题目详解】由题意,在正项等比数列中,,则.故选:D.【题目点拨】本题主要考查了等比数列的性质,以及对数的运算求值,其中解答中熟记等比数列的性质,合理应用对数的运算求解是解答的关键,着重考查了推理与计算能力,属于基础题.10、C【解题分析】

利用三角形面积公式可得,结合正弦定理及三角恒等变换知识可得,从而得到角A.【题目详解】∵∴即∴∴∴,∴(舍)∴故选C【题目点拨】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

求出,再利用,求得.【题目详解】,因为⊥,所以,解得:.【题目点拨】本题考查向量的坐标表示、数量积运算,要注意向量坐标与点坐标的区别.12、【解题分析】

利用同角三角函数的基本关系得,再根据角度关系,利用诱导公式即可得答案.【题目详解】∵且,∴;∵,∴.故答案为:.【题目点拨】本题考查同角三角函数的基本关系、诱导公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号问题.13、5【解题分析】

由题得表示点到点的距离,再利用点到直线的距离求解.【题目详解】由题得表示点到点的距离.又∵点在直线上,∴的最小值等于点到直线的距离,且.【题目点拨】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.14、【解题分析】

本题可以先通过得出的解析式,再得出的解析式,最后通过数列是递减数列得出实数的取值范围.【题目详解】,因为该数列是递减数列,所以即因为所以实数的取值范围是.【题目点拨】本题考察的是递减数列的性质,递减数列的后一项减去前一项的值一定是一个负值.15、70【解题分析】设高一、高二抽取的人数分别为,则,解得.【考点】分层抽样.16、【解题分析】

利用等比数列的通项公式即可得出.【题目详解】∵数列是等比数列,若,,则,解得,即.故答案为:【题目点拨】本题考查了等比数列的通项公式,考查了计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)300人;(2)【解题分析】

(1)由频数分布表可得40人中成绩不低于90分的学生人数为15人,由此可计算出该年级成绩不低于90分的学生人数;(2)根据题意写出所有的基本事件,确定基本事件的个数,即可计算出恰好选中一名男生一名女生的概率.【题目详解】⑴40名学生中成绩不低于90分的学生人数为15人;所以估计该年级成绩不低于90分的学生人数为⑵分别记男生为1,2,3号,女生为4,5号,从中选出2名学生,有如下基本事件(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)因此,共有10个基本事件,上述10个基本事件发生的可能性相同,且只有6个基本事件是选中一名男生一名女生(记为事件),即(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)∴【题目点拨】本题考查频率分布表以及古典概型的概率计算,,考查学生的运算能力,属于基础题.18、(1)6人;(2)75%;(3).【解题分析】试题分析:(1)由频率分布直方图可得化学成绩低于50分的频率为0.1,然后可求得人数为人;(2)根据频率分布直方图求分数在第三、四、五、六组的频率之和即可;(3)结合图形可得“成绩低于50分”的人数是6人,成绩在这组的人数是,由古典概型概率公式可得所求概率为。试题解析:(1)因为各组的频率和等于1,由频率分布直方图可得低于50分的频率为:,所以低于分的人数为(人).(2)依题意可得成绩60及以上的分数所在的第三、四、五、六组(低于50分的为第一组),其频率之和为,故抽样学生成绩的及格率是,于是,可以估计这次考试化学学科及格率约为75%.(3)由(1)知,“成绩低于50分”的人数是6人,成绩在这组的人数是(人),所以从成绩不及格的学生中随机调查1人,有15种选法,成绩低于50分有6种选法,故所求概率为.19、(1)(2)【解题分析】

(1)由题可计算得,求出公差,进而求出通项公式(2)利用等差数列和等比数列的求和公式计算即可。【题目详解】解:(1)由公差及,解得,所以,所以通项(2)由(1)有,所以数列的前项和.【题目点拨】本题考查等差数列的通项公式以及等差数列和等比数列的求和公式,属于简单题。20、(1)2,证明见解析(2)【解题分析】

(1)由函数为奇函数,得,化简得,所以,.再转化函数为,由定义法证明单调性.(2)将可化为,构造函数,再由在上是单调递增函数求解.【题目详解】(1)根据题意,因为函数为奇函数,所以,即,即,即,化简得,所以.所以,证明:任取且,则因为,所以,,,,所以∴,所以在上单调递增;(2)可化为,设函数,由(1)可知,在上也是单调递增,所以,即,解得.【题目点拨】本题主要考查了函数的单调性和奇偶性的应用,还考查了运算求解的能力,属于中档题.21、(1);(2);(3).【解题分析】

(1)设点P坐标为(x,y),运用两点的距离公式,化简整理,即可得到所求轨迹的方程;(2)由,则点到边的距离为,由点到线的距离公式得直线的斜率;(3)由题意可知:O,Q,M,N四点共圆且在以OQ为直径的圆上,设,则圆的圆心为运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论