甘肃省天水市第六中学2024届数学高一下期末统考模拟试题含解析_第1页
甘肃省天水市第六中学2024届数学高一下期末统考模拟试题含解析_第2页
甘肃省天水市第六中学2024届数学高一下期末统考模拟试题含解析_第3页
甘肃省天水市第六中学2024届数学高一下期末统考模拟试题含解析_第4页
甘肃省天水市第六中学2024届数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省天水市第六中学2024届数学高一下期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分2.已知,,,则()A. B. C. D.3.在中,,,,,则()A.或 B. C. D.4.的值等于()A. B.- C. D.-5.已知的三个内角之比为,那么对应的三边之比等于()A. B. C. D.6.已知a,b为不同的直线,为平面,则下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.函数的图象与函数的图象的交点个数为()A.3 B.2 C.1 D.08.若为圆的弦的中点,则直线的方程是()A. B.C. D.9.若平面向量,满足,,且,则等于()A. B. C.2 D.810.已知,为直线,,为平面,下列命题正确的是()A.若,,则B.若,,则与为异面直线C.若,,,则D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.正项等比数列中,,,则公比__________.12.如果函数的图象关于直线对称,那么该函数在上的最小值为_______________.13.已知数列的通项公式为是数列的前n项和,则______.14.若,则满足的的取值范围为______________;15.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.16.设a>0,b>0,若是与3b的等比中项,则的最小值是__.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.化简求值:(1)化简:(2)求值,已知,求的值18.已知公差不为零的等差数列的前项和为,,且成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求.19.已知数列满足.(1)求数列的通项公式;(2)若,为数列的前项和,求证:20.使用支付宝和微信支付已经成为广大消费者最主要的消费支付方式,某超市通过统计发现一周内超市每天的净利润(万元)与每天使用支付宝和微信支付的人数(千人)具有线性相关关系,并得到最近一周的7组数据如下表,并依此作为决策依据.(1)作出散点图,并求出回归方程(,精确到);(2)超市为了刺激周一消费,拟在周一开展使用支付宝和微信支付随机抽奖活动,总奖金7万元.根据市场调查,抽奖活动能使使用支付宝和微信支付消费人数增加7千人,试决策超市是否有必要开展抽奖活动?(3)超市管理层决定:从周一到周日,若第二天的净利润比前一天增长超过两成,则对全体员工进行奖励,在(Ⅱ)的决策下,求全体员工连续两天获得奖励的概率.参考数据:,,,.参考公式:,,.21.在中,角A,B,C,的对应边分别为,且.(Ⅰ)求角B的大小;(Ⅱ)若的面积为,,D为AC的中点,求BD的长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【题目详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【题目点拨】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.2、C【解题分析】

利用指数函数、对数函数的单调性即可求解.【题目详解】为减函数,,为增函数,,为增函数,,所以,故.故选:C【题目点拨】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.3、C【解题分析】

由三角形面积公式可得,进而可得解.【题目详解】在中,,,,,可得,所以,所以【题目点拨】本题主要考查了三角形的面积公式,属于基础题.4、C【解题分析】

利用诱导公式把化简成.【题目详解】【题目点拨】本题考查诱导公式的应用,即把任意角的三角函数转化成锐角三角函数,考查基本运算求解能力.5、D【解题分析】∵已知△ABC的三个内角之比为,∴有,再由,可得,故三内角分别为.再由正弦定理可得三边之比,故答案为点睛:本题考查正弦定理的应用,结合三角形内角和等于,很容易得出三个角的大小,利用正弦定理即出结果6、D【解题分析】

根据线面垂直与平行的性质与判定分析或举出反例即可.【题目详解】对A,根据线线平行与线面垂直的性质可知A正确.对B,根据线线平行与线面垂直的性质可知B正确.对C,根据线面垂直的性质知C正确.对D,当,时,也有可能.故D错误.故选:D【题目点拨】本题主要考查了空间中平行垂直的判定与性质,属于中档题.7、B【解题分析】由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)=2ln2∈(1,2),可知点(2,1)位于函数f(x)=2lnx图象的下方,故函数f(x)=2lnx的图象与函数g(x)=x2-4x+5的图象有2个交点.8、D【解题分析】

圆的圆心为O,求出圆心坐标,利用垂径定理,可以得到,求出直线的斜率,利用两直线垂直斜率关系可以求出直线的斜率,利用点斜式写出直线方程,最后化为一般式方程.【题目详解】设圆的圆心为O,坐标为(1,0),根据圆的垂径定理可知:,因为,所以,因此直线的方程为,故本题选D.【题目点拨】本题考查了圆的垂径定理、两直线垂直斜率的关系,考查了斜率公式.9、B【解题分析】

由,可得,再结合,展开可求出答案.【题目详解】由,可知,展开可得,所以,又,,所以.故选:B.【题目点拨】本题考查向量数量积的应用,考查学生的计算求解能力,注意向量的平方等于模的平方,属于基础题.10、D【解题分析】

利用空间中线线、线面、面面间的位置关系对选项逐一判断即可.【题目详解】由,为直线,,为平面,知:在A中,若,,则与相交、平行或异面,故A错误;在B中,若,,则与相交、平行或异面,故B错误;在C中,若,,,则与相交、平行或异面,故C错误;在D中,若,,,则由线面垂直、面面平行的性质定理得,故D正确.故选:D.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据题意,由等比数列的性质可得,进而分析可得答案.【题目详解】根据题意,等比数列中,,则,又由数列是正项的等比数列,所以.【题目点拨】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,以及注意数列是正项等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解题分析】

根据三角公式得辅助角公式,结合三角函数的对称性求出值,再利用的取值范围求出函数的最小值.【题目详解】解:,令,则,则.因为函数的图象关于直线对称,所以,即,则,平方得.整理可得,则,所以函数.因为,所以,当时,即,函数有最小值为.故答案为:.【题目点拨】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.13、【解题分析】

对数列的通项公式进行整理,再求其前项和,利用对数运算规则,可得到,从而求出,得到答案.【题目详解】所以所以.故答案为:.【题目点拨】本题考查对数运算公式,由数列的通项求前项和,数列的极限,属于中档题.14、【解题分析】

本题首先可确定在区间上所对应的的值,然后可结合正弦函数图像得出不等式的解集.【题目详解】当时,令,解得或,如图,绘出正弦函数图像,结合函数图像可知,当时,的解集为【题目点拨】本题考查三角函数不等式的解法,考查对正弦函数性质的理解,考查计算能力,体现了基础性,是简单题.15、【解题分析】

要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【题目详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【题目点拨】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.16、【解题分析】由已知,是与的等比中项,则则,当且仅当时等号成立故答案为2【题目点拨】本题考查基本不等式的性质、等比数列的性质,其中熟练应用“乘1法”是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)根据诱导公式先化简每一项,然后即可得到最简结果;(2)利用“齐次”式的特点,分子分母同除以,将其化简为关于的形式即可求值.【题目详解】(1)原式,(2)原式【题目点拨】本题考查诱导公式和同角三角函数的基本关系的运用,难度较易.(1)利用诱导公式进行化简时,掌握“奇变偶不变”的实际含义进行化简即可;(2)求解形如的“齐次式”的值,注意采用分子分母同除以的方法,将其化简为关于的形式再求值.18、(1);(2).【解题分析】试题分析:(1)利用等差等比基本公式,计算数列的通项公式;(2)利用裂项相消法求和.试题解析:(1)设公差为,因为,,成等数列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.19、(1).(2)证明见解析【解题分析】

(1)由,可得当时,,两式相减可求数列的通项公式;(2)将带入,再计算,通过裂项相消计算,即可证明出。【题目详解】(1)解:∵,∴(,),两式相减得:,∴.当时,,满足上式,∴.(2)证明:由(1)知,∴,∴,∴.【题目点拨】本题考查利用公式求解数列的通项公式及裂项相消求数列的前n项和,属于基础题。20、(1);(2)见解析;(3)【解题分析】

(1)通过表格描点即可,先计算和,然后通过公式计算出线性回归方程;(2)先计算活动开展后使用支付宝和微信支付的人数为(千人),代入(1)问得到结果;(3)先判断周一到周日全体员工只有周二、周三、周四、周日获得奖励,从而确定基本事件,再找出连续两天获得奖励的基本事件,故可计算出全体员工连续两天获得奖励的概率.【题目详解】(1)散点图如图所示,关于的回归方程为(2)活动开展后使用支付宝和微信支付的人数为(千人)由(1)得,当时,此时超市的净利润约为,故超市有必要开展抽奖活动(3)由于,,,,,,故从周一到周日全体员工只有周二、周三、周四、周日获得奖励从周一到周日中连续两天,基本事件为(周一、周二),(周二、周三),(周三、周四),(周四、周五),(周五、周六),(周六、周日),共6个基本事件连续两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论