版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省延边数学高一第二学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,且,则向量在向量上的投影等于()A.-4 B.4 C. D.2.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B. C. D.3.已知,,,若点是所在平面内一点,且,则的最大值等于().A. B. C. D.4.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从,,三所中学抽取60名教师进行调查,已知,,三所学校中分别有180,270,90名教师,则从学校中应抽取的人数为()A.10 B.12 C.18 D.245.在中,内角,,的对边分别为,,,若,,,则的最小角为()A. B. C. D.6.某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3∶2,抽到高三年级学生10人,则该校高二年级学生人数为()A.600 B.800 C.1000 D.12007.若,则A. B. C. D.8.关于的不等式的解集中,恰有3个整数,则的取值范围是()A. B.C. D.9.数列的通项公式为,若数列单调递增,则的取值范围为A. B. C. D.10.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,的最大值为_____.12.某小区拟对如图一直角△ABC区域进行改造,在三角形各边上选一点连成等边三角形,在其内建造文化景观.已知,则面积最小值为____13.圆锥的底面半径是3,高是4,则圆锥的侧面积是__________.14.如图,正方体的棱长为,动点在对角线上,过点作垂直于的平面,记这样得到的截面多边形(含三角形)的周长为,设,则当时,函数的值域__________.15.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.16.已知数列的前项和是,且,则______.(写出两个即可)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求过点且与圆相切的直线方程.18.如图,在四棱锥中,平面,,,,点Q在棱AB上.(1)证明:平面.(2)若三棱锥的体积为,求点B到平面PDQ的距离.19.设数列的前项和为,且.(1)求数列的通项公式;(2)若,为数列位的前项和,求;(3)在(2)的条件下,是否存在自然数,使得对一切恒成立?若存在,求出的值;若不存在,说明理由.20.已知圆与直线相切(1)若直线与圆交于两点,求(2)已知,设为圆上任意一点,证明:为定值21.如图,在平面四边形中,为的角平分线,,,.(1)求;(2)若的面积,求的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
根据公式,向量在向量上的投影等于,计算求得结果.【题目详解】向量在向量上的投影等于.故选A.【题目点拨】本题考查了向量的投影公式,只需记住公式代入即可,属于基础题型.2、A【解题分析】
若△AF1B的周长为4,由椭圆的定义可知,,,,,所以方程为,故选A.考点:椭圆方程及性质3、A【解题分析】以为坐标原点,建立平面直角坐标系,如图所示,则,,,即,所以,,因此,因为,所以的最大值等于,当,即时取等号.考点:1、平面向量数量积;2、基本不等式.4、A【解题分析】
按照分层抽样原则,每部分抽取的概率相等,按比例分配给每部分,即可求解.【题目详解】,,三所学校教师总和为540,从中抽取60人,则从学校中应抽取的人数为人.故选:A.【题目点拨】本题考查分层抽样抽取方法,按比例分配是解题的关键,属于基础题.5、A【解题分析】
由三角形大边对大角可知所求角为角,利用余弦定理可求得,进而得到结果.【题目详解】的最小角为角,则故选:【题目点拨】本题考查利用余弦定理解三角形的问题,关键是明确三角形中大边对大角的特点,进而根据余弦定理求得所求角的余弦值.6、B【解题分析】
根据题意可设抽到高一和高二年级学生人数分别为和,则,继而算出抽到的各年级人数,再根据分层抽样的原理可以推得该校高二年级的人数.【题目详解】根据题意可设抽到高一和高二年级学生人数分别为和,则,即,所以高一年级和高二年级抽到的人数分别是12人和8人,则该校高二年级学生人数为人.故选:.【题目点拨】本题考查分层抽样的方法,属于容易题.7、B【解题分析】
分析:由公式可得结果.详解:故选B.点睛:本题主要考查二倍角公式,属于基础题.8、C【解题分析】
首先将原不等式转化为,然后对进行分类讨论,再结合不等式解集中恰有3个整数,列出关于的条件,求解即可.【题目详解】关于的不等式等价于当时,即时,于的不等式的解集为,要使解集中恰有3个整数,则;当时,即时,于的不等式的解集为,不满足题意;当时,即时,于的不等式的解集为,要使解集中恰有3个整数,则;综上,.故选:C.【题目点拨】本题主要考了一元二次不等式的解法以及分类讨论思想,属于中档题.9、C【解题分析】
数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化简解出即可得出.【题目详解】数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化为:a<n1+n.∴a<1.故选C.【题目点拨】本题考查了等比数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.10、B【解题分析】
首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【题目详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【题目点拨】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
化简,再利用基本不等式以及辅助角公式求出的最大值,即可得到的最大值【题目详解】由题可得:由于,,所以,由基本不等式可得:由于,所以所以,即的最大值为故答案为【题目点拨】本题考查三角函数的最值问题,涉及二倍角公式、基本不等式、辅助角公式等知识点,属于中档题。12、【解题分析】
设,然后分别表示,利用正弦定理建立等式用表示,从而利用三角函数的性质得到的最小值,从而得到面积的最小值.【题目详解】因为,所以,显然,,设,则,且,则,所以,在中,由正弦定理可得:,求得,其中,则,因为,所以当时,取得最大值1,则的最小值为,所以面积最小值为,【题目点拨】本题主要考查了利用三角函数求解实际问题的最值,涉及到正弦定理的应用,属于难题.对于这类型题,关键是能够选取恰当的参数表示需求的量,从而建立相关的函数,利用函数的性质求解最值.13、【解题分析】分析:由已知中圆锥的底面半径是,高是,由勾股定理,我们可以计算出圆锥的母线长,代入圆锥侧面积公式,即可得到结论.详解:圆锥的底面半径是,高是,圆锥的母线长,则圆锥侧面积公式,故答案为.点睛:本题主要考查圆锥的性质与圆锥侧面积公式,意在考查对基本公式的掌握与理解,属于简单题.14、【解题分析】
根据已知条件,所得截面可能是三角形,也可能是六边形,分别求出三角形与六边形周长的取值情况,即可得到函数的值域.【题目详解】如图:∵正方体的棱长为,∴正方体的对角线长为6,∵(i)当或时,三角形的周长最小.设截面正三角形的边长为,由等体积法得:∴∴,(ii)或时,三角形的周长最大,截面正三角形的边长为,∴(iii)当时,截面六边形的周长都为∴∴当时,函数的值域为.【题目点拨】本题考查多面体表面的截面问题和线面垂直,关键在于结合图形分析截面的三种情况,进而得出与截面边长的关系.15、【解题分析】
利用正弦定理得到,再根据有两解得到,计算得到答案.【题目详解】由正弦定理得:若有两解:故答案为【题目点拨】本题考查了正弦定理,有两解,意在考查学生的计算能力.16、或【解题分析】
利用已知求的公式,即可算出结果.【题目详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【题目点拨】本题主要考查利用与的关系公式,即,求的方法应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、直线方程为或【解题分析】
当直线的斜率不存在时,直线方程为,满足题意,当直线的斜率存在时,设出直线的方程,由圆心到直线的距离等于半径,可解出的值,从而求出方程。【题目详解】当直线的斜率不存在时,直线方程为,经检验,满足题意.当直线的斜率存在时,设直线方程为,即,圆心到直线的距离等于半径,即,可解得.即直线为.综上,所求直线方程为或.【题目点拨】本题考查了圆的切线的求法,考查了直线的方程,考查了点到直线的距离公式,属于基础题。18、(1)证明见解析;(2).【解题分析】
(1)线面垂直只需证明PD和平面内两条相交直线垂直即可,易得,另外中已知三边长通过勾股定理易得,所以平面.(2)点B到平面PDQ的距离通过求得三棱锥的体积和面积即可,而,带入数据求解即可.【题目详解】(1)证明:在中,,,所以.所以是直角三角形,且,即.因为平面PAD,平面PAD,所以.因为,所以平面ABCD.(2)解:设.因为.,所以的面积为.因为平面ABCD,所以三棱锥的体积为,解得.因为,所以,所以的面积为.则三棱锥的体积为.在中,,,,则.设点B到平面PDQ的距离为h,则,解得,即点B到平面PDQ的距离为.【题目点拨】此题考察立体几何的证明,线面垂直只需证明线与平面内的两条相交直线分别垂直即可,第二问考察了三棱锥等体积法,通过变化顶点和底面进行转化,属于中档题目.19、(1)(2)(3)【解题分析】
(1)根据题干可推导得到,进而得到数列是以为首项,为公比的等比数列,由等比数列的通项公式得到结果;(2)由错位相减的方法得到结果;(3)根据第二问得到:,数列单调递增,由数列的单调性得到数列范围.【题目详解】(1)由,令,则,又,所以.当时,由可得,,即,所以是以为首项,为公比的等比数列,于是.(2)∴∴从而.(3)由(2)知,∴数列单调递增,∴,又,∴要恒成立,则,解得,又,故.【题目点拨】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。20、(1)4;(2)详见解析.【解题分析】
(1)利用直线与圆相切,结合点到直线距离公式求出半径,从而得到圆的方程;根据直线被圆截得弦长的求解方法可求得结果;(2)设,则,利用两点间距离公式表示出,化简可得结果.【题目详解】(1)由题意知,圆心到直线的距离:圆与直线相切圆方程为:圆心到直线的距离:,(2)证明:设,则即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应急准备面试
- 山西传媒学院《国家公务员管理》2023-2024学年第一学期期末试卷
- 山西财经大学《水彩粉风景写生》2023-2024学年第一学期期末试卷
- 山东中医药大学《数字媒体高级实践》2023-2024学年第一学期期末试卷
- 2023年多路控制阀项目融资计划书
- 小学生体育安全体育理论课
- 山东艺术设计职业学院《互联网发展历程》2023-2024学年第一学期期末试卷
- 山东杏林科技职业学院《人工智能技术与应用》2023-2024学年第一学期期末试卷
- 电商合同范例6
- 基坑梯笼租赁合同范例
- 强迫症病人的护理11课件
- 最新危险化学品安全培训课件
- 小学美术人美六年级上册画一幅色彩和谐的画《画一幅色彩和谐的画》
- 女性主义视角下《地下铁道》中科拉命运的解读分析研究 社会学专业
- 国开数字电子电路形考答案
- 2024国家开放大学电大专科《物流信息技术》期末试题及答案(试卷号:2322)【新】
- 劳动法全套课件
- 一年级语文上册百词竞赛(含答案)
- 国家开放大学《中文学科论文写作》形考任务(1-4)试题及答案解析
- 外科洗手法-课件
- 人员定位系统管理制度管理办法规定汇编(修订完稿)
评论
0/150
提交评论