2024届河南省商开九校联考数学高一下期末学业质量监测试题含解析_第1页
2024届河南省商开九校联考数学高一下期末学业质量监测试题含解析_第2页
2024届河南省商开九校联考数学高一下期末学业质量监测试题含解析_第3页
2024届河南省商开九校联考数学高一下期末学业质量监测试题含解析_第4页
2024届河南省商开九校联考数学高一下期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省商开九校联考数学高一下期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等比数列{an}中,若a2,a9是方程x2﹣2x﹣6=0的两根,则a4•a7的值为()A.6 B.1 C.﹣1 D.﹣62.以点和为直径两端点的圆的方程是()A. B.C. D.3.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.4.已知集合,则().A. B. C. D.5.某公司为激励创新,计划逐年加大研发奖金投入,若该公司年全年投入研发奖金万元,在此基础上,每年投入的研发奖金比上一年增长,则该公司全年投入的研发奖金开始超过万元的年份是()(参考数据:,,)A.年 B.年 C.年 D.年6.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18C.24 D.307.要得到函数y=cos4x+πA.向左平移π3个单位长度 B.向右平移πC.向左平移π12个单位长度 D.向右平移π8.设定义域为的奇函数是增函数,若对恒成立,则实数的取值范围是()A. B. C. D.9.在三棱锥中,平面,,,点M为内切圆的圆心,若,则三棱锥的外接球的表面积为()A. B. C. D.10.若,则下列不等式不成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列中,,则公比____________.12.某中学初中部共有名老师,高中部共有名教师,其性别比例如图所示,则该校女教师的人数为__________.13.函数()的值域是__________.14..已知,若是以点O为直角顶点的等腰直角三角形,则的面积为.15.把一枚质地均匀的硬币先后抛掷两次,两次都是正面向上的概率为________.16.化简:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,求函数的零点;(2)若在恒成立,求的取值范围;(3)设函数,解不等式.18.已知定点,点A在圆上运动,M是线段AB上的一点,且,求出点M所满足的方程,并说明方程所表示的曲线是什么.19.已知函数,将的图象向左平移个单位后得到的图象,且在区间内的最大值为.(1)求实数的值;(2)求函数与直线相邻交点间距离的最小值.20.已知数列的前项和为,满足,数列满足.(1)求数列、的通项公式;(2),求数列的前项和;(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.21.设平面三点、、.(1)试求向量的模;(2)若向量与的夹角为,求;(3)求向量在上的投影.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

由题意利用韦达定理,等比数列的性质,求得a4•a7的值.【题目详解】∵等比数列{an}中,若a2,a9是方程x2﹣2x﹣6=0的两根,∴a2•a9=﹣6,则a4•a7=a2•a9=﹣6,故选:D.【题目点拨】本题主要考查等比数列的性质及二次方程中韦达定理的应用,考查了分析问题的能力,属于基础题.2、A【解题分析】

可根据已知点直接求圆心和半径.【题目详解】点和的中点是圆心,圆心坐标是,点和间的距离是直径,,即,圆的方程是.故选A.【题目点拨】本题考查了圆的标准方程的求法,属于基础题型.3、C【解题分析】

利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【题目详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【题目点拨】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.4、B【解题分析】

求解一元二次不等式的解集,化简集合的表示,最后运用集合交集的定义,结合数轴求出.【题目详解】因为,所以,故本题选B.【题目点拨】本题考查了一元二次不等式的解法,考查了集合交集的运算,正确求解一元二次不等式的解集、运用数轴是解题的关键.5、B【解题分析】试题分析:设从2015年开始第年该公司全年投入的研发资金开始超过200万元,由已知得,两边取常用对数得,故从2019年开始,该公司全年投入的研发资金开始超过200万元,故选B.【考点】增长率问题,常用对数的应用【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作等比数列的应用,解题时要注意把哪个数作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可求解.6、C【解题分析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为V=1考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.7、C【解题分析】

先化简得y=cos【题目详解】因为y=cos所以要得到函数y=cos4x+π3的图像,只需将函数故选:C【题目点拨】本题主要考查三角函数的图像的变换,意在考查学生对该知识的理解掌握水平,属于基础题.8、A【解题分析】

由题意可得,即为,可得恒成立,讨论是否为0,结合换元法和基本不等式,可得所求范围.【题目详解】解:由题意可得,即为,可得恒成立,当时,上式显然成立;当时,可得,设,,可得,由,可得,可得,即,故选:A.【题目点拨】本题主要考查函数的奇偶性和单调性的运用,考查不等式恒成立问题解法,注意运用参数分离和换元法,考查化简运算能力,属于中档题.9、C【解题分析】

求三棱锥的外接球的表面积即求球的半径,则球心到底面的距离为,根据正切和MA的长求PA,再和MA的长即可通过勾股定理求出球半径R,则表面积.【题目详解】取BC的中点E,连接AE(图略).因为,所以点M在AE上,因为,,所以,则的面积为,解得,所以.因为,所以.设的外接圆的半径为r,则,解得.因为平面ABC,所以三棱锥的外接球的半径为,故三棱锥P-ABC的外接球的表面积为.【题目点拨】此题关键点通过题干信息画出图像,平面ABC和底面的内切圆圆心确定球心的位置,根据几何关系求解即可,属于三棱锥求外接球半径基础题目.10、A【解题分析】

由题得a<b<0,再利用作差比较法判断每一个选项的正误得解.【题目详解】由题得a<b<0,对于选项A,=,所以选项A错误.对于选项B,显然正确.对于选项C,,所以,所以选项C正确.对于选项D,,所以选项D正确.故答案为A【题目点拨】(1)本题主要考查不等式的基本性质和实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比差的一般步骤是:作差→变形(配方、因式分解、通分等)→与零比→下结论;比商的一般步骤是:作商→变形(配方、因式分解、通分等)→与1比→下结论.如果两个数都是正数,一般用比商,其它一般用比差.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据题意得到:,解方程即可.【题目详解】由题知:,解得:.故答案为:【题目点拨】本题主要考查等比数列的性质,熟练掌握等比数列的性质为解题的关键,属于简单题.12、【解题分析】

由初中部、高中部男女比例的饼图,初中部女老师占70%,高中部女老师占40%,分别算出女老师人数,再相加.【题目详解】初中部女老师占70%,高中部女老师占40%,该校女教师的人数为.【题目点拨】考查统计中读图能力,从图中提取基本信息的基本能力.13、【解题分析】

由,根据基本不等式即可得出,然后根据对数函数的单调性即可得出,即求出原函数的值域.【题目详解】解:,当且仅当,时取等号,;原函数的值域是.故答案为:.【题目点拨】考查函数的值域的定义及求法,基本不等式的应用,以及对数函数的单调性,增函数的定义.14、4【解题分析】由得;由是以为直角顶点的等腰直角三角形,则,.由得.又,则,所以又,则,则,所以所以;则则的面积为15、【解题分析】

把一枚质地均匀的硬币先后抛掷两次,利用列举法求出基本事件有4个,由此能求出两次都是正面向上的概率.【题目详解】把一枚质地均匀的硬币先后抛掷两次,基本事件有4个,分别为:正正,正反,反正,反反,两次都是正面向上的概率为.故答案为:.【题目点拨】本题考查古典概型的概率计算,求解时注意列举法的应用,即列举出所有等可能结果.16、0【解题分析】原式=+=-sinα+sinα=0.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)(3)见解析【解题分析】

(1)解方程可得零点;(2)恒成立,可分离参数得,这样只要求得在上的最大值即可;(3)注意到的定义域,不等式等价于,这样可根据与0,1的大小关系分类讨论.【题目详解】(1)当时,令得,,∵,∴函数的零点是1(2)在恒成立,即在恒成立,分离参数得:,∵,∴从而有:.(3)令,得,,因为函数的定义域为,所以等价于(1)当,即时,恒成立,原不等式的解集是(2)当,即时,原不等式的解集是(3)当,即时,原不等式的解集是(4)当,即时,原不等式的解集是综上所述:当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是【题目点拨】本题考查函数的零点,考查不等式恒成立问题,考查解含参数的一元二次不等式.其中不等式恒成立问题可采用参数法转化为求函数的最值问题,而解一元二次不等式,必须对参数分类讨论,解题关键是确定分类标准.解一元二次不等式的分类标准有三个方面:一是二次的系数正负或者为0问题,二是一元二次方程的判别式的正负或0的问题,三是一元二次方程两根的大小关系.18、;方程所表示的曲线是以为圆心,为半径的圆.【解题分析】

设出点的坐标,结合向量的关系式及圆的方程可求.【题目详解】设,,因为,所以;,,因为点A在圆上运动,所以;化简得;方程所表示的曲线是以为圆心,为半径的圆.【题目点拨】本题主要考查曲线方程的求解,相关点法是常用的方法,侧重考查数学运算的核心素养.19、(1)1;(2)【解题分析】

(1)将化简可得,再由平移变换可得,由在区间内的最大值为,可得的值;(2)解方程,可得所求相交点距离的最小值.【题目详解】解:(1)所以,,∴当时,即时,函数取得最大值,∴.(2)根据题意,令,,∴或,.解得或,.因为,当时取等号,∴相邻交点间距离的最小值是.【题目点拨】本题主要考查三角函数的平移变化及三角恒等变换与三角函数的性质,属于中档题.20、(1),;(2)见解析;(3)存在,.【解题分析】

(1)利用可得,从而可得为等比数列,故可得其通项公式.用累加法可求的通项.(2)利用分组求和法可求,注意就的奇偶性分类讨论.(3)根据的通项可得,故考虑的解可得满足条件的的值.【题目详解】(1)在数列中,当时,.当时,由得,因为,故,所以数列是以为首项,为公比的等比数列即.在数列中,当时,有,由累加法得,,.当时,也符合上式,所以.(2).当为偶数时,=;当为奇数时,=.(3)对任意的正整数,有,假设存在正整数,使得,则,令,解得,又为正整数,所以满足题意.【题目点拨】给定数列的递推关系,求数列的通项时,我们常需要对递推关系做变形构建新数列(新数列的通项容易求得),常见的递推关系、变形方法及求法如下:(1),用累加法;(2),可变形为,利用等比数列的通项公式可求的通项公式,两种方法都可以得到的通项公式.(3)递推关系式中有与前项和,可利用实现与之间的相互转化.另外,数列不等式恒成立与有解问题,可转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论