




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市门头沟区数学高一第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,则的形状为()A.直角三角形 B.等腰三角形 C.钝角三角形 D.正三角形2.若正项数列的前项和为,满足,则()A. B. C. D.3.已知数列满足,,且,则A.4 B.5 C.6 D.84.若实数,满足约束条件,则的取值范围是()A. B. C. D.5.在△中,若,则△为()A.等腰三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形6.在中,若,则的面积为().A.8 B.2 C. D.47.将函数图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移个单位得到数学函数的图像,在图像的所有对称轴中,离原点最近的对称轴为()A. B. C. D.8.函数则=()A. B. C.2 D.09.已知函数,其图象与直线相邻两个交点的距离为,若对于任意的恒成立,则的取值范围是()A. B. C. D.10.下列函数中,在区间上为增函数的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.12.中,内角、、所对的边分别是、、,已知,且,,则的面积为_____.13.已知函数的部分图象如图所示,则_______.14.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.15.关于的不等式,对于恒成立,则实数的取值范围为_______.16.已知等差数列的前项和为,若,则=_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数满足且,则称函数为“函数”.(1)试判断是否为“函数”,并说明理由;(2)函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;(3)在(2)的条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求.18.已知.(1)求函数的最小正周期和对称轴方程;(2)若,求的值域.19.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.20.某小型企业甲产品生产的投入成本x(单位:万元)与产品销售收入y(单位:万元)存在较好的线性关系,下表记录了最近5次该产品的相关数据.x(万元)357911y(万元)810131722(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,判断该企业甲产品投入成本12万元的毛利率更大还是投入成本15万元的毛利率更大(毛利率)?相关公式:,.21.已知(且).(1)若,求的值;(2)若没有实数根,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
在中,由,变形为,再利用内角和转化为,通过两角和的正弦展开判断.【题目详解】在中,因为,所以,所以,所以,所以,所以直角三角形.故选:A【题目点拨】本题主要考查了利用三角恒等变换判断三角形的形状,还考查了运算求解的能力,属于基础题.2、A【解题分析】
利用,化简,即可得到,令,所以,,令,所以原式为数列的前1000项和,求和即可得到答案。【题目详解】当时,解得,由于为正项数列,故,由,所以,由,可得①,所以②②—①可得,化简可得由于,所以,即,故为首项为1,公差为2的等差数列,则,令,所以,令所以原式故答案选A【题目点拨】本题主要考查数列通项公式与前项和的关系,以及利用裂项求数列的和,解题的关键是利用,求出数列的通项公式,有一定的综合性。3、B【解题分析】
利用,,依次求,观察归纳出通项公式,从而求出的值.【题目详解】∵数列满足,,,∴,∴,∴,,∴,∴,……,∵,,,,…….,由此归纳猜想,∴.故选B.【题目点拨】本题考查了一个教复杂的递推关系,本题的难点在于数列的项位于指数位置,不易化简和转化,一般的求通项方法无法解决,当遇见这种情况时一般我们就可以用“归纳”的方法处理,即通过求几项,然后观察规律进而得到结论.4、D【解题分析】画出表示的可行域,如图所示的开放区域,平移直线,由图可知,当直线经过时,直线在纵轴上的截距取得最大值,此时有最小值,无最大值,的取值范围是,故选A.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5、A【解题分析】
利用正弦定理化简已知条件,得到,由此得到,进而判断出正确选项.【题目详解】由正弦定理得,所以,所以,故三角形为等腰三角形,故选A.【题目点拨】本小题主要考查利用正弦定理判断三角形的形状,考查同角三角函数的基本关系式,属于基础题.6、C【解题分析】
由正弦定理结合已知,可以得到的关系,再根据余弦定理结合,可以求出的值,再利用三角形面积公式求出三角形的面积即可.【题目详解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面积为,故本题选C.【题目点拨】本题考查了正弦定理、余弦定理、三角形面积公式,考查了数学运算能力.7、A【解题分析】分析:根据平移变换可得,根据放缩变换可得函数的解析式,结合对称轴方程求解即可.详解:将函数的图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,得到,再将所得图象向左平移个单位得到函数的图象,即,由,得,当时,离原点最近的对称轴方程为,故选A.点睛:本题主要考查三角函数的图象与性质,属于中档题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.8、B【解题分析】
先求得的值,进而求得的值.【题目详解】依题意,,故选B.【题目点拨】本小题主要考查分段函数求值,考查运算求解能力,属于基础题.9、A【解题分析】由题意可得相邻最低点距离1个周期,,,,即,,即所以,包含0,所以k=0,,,,选A.【题目点拨】由于三角函数是周期周期函数,所以不等式解集一般是一系列区间并集,对于恒成立时,需要令k为几个特殊值,再与已知集合做运算.10、A【解题分析】试题分析:对A,函数在上为增函数,符合要求;对B,在上为减函数,不符合题意;对C,为上的减函数,不符合题意;对D,在上为减函数,不符合题意.故选A.考点:函数的单调性,容易题.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解题分析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12、【解题分析】
由正弦定理边角互化思想结合两角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面积公式可计算出的面积.【题目详解】,由边角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案为.【题目点拨】本题考查正弦定理边角互化思想的应用,考查利用余弦定理解三角形以及三角形面积公式的应用,解题时要结合三角形已知元素类型合理选择正弦、余弦定理解三角形,考查运算求解能力,属于中等题.13、【解题分析】
由图可得,即可求得:,再由图可得:当时,取得最大值,即可列方程,整理得:,解得:(),结合即可得解.【题目详解】由图可得:,所以,解得:由图可得:当时,取得最大值,即:整理得:,所以()又,所以【题目点拨】本题主要考查了三角函数图象的性质及观察能力,还考查了转化思想及计算能力,属于中档题.14、【解题分析】
利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【题目详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【题目点拨】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.15、或【解题分析】
利用换元法令,则对任意的恒成立,再对分两种情况讨论,令求出函数的最小值,即可得答案.【题目详解】令,则对任意的恒成立,(1)当,即时,上式显然成立;(2)当,即时,令①当时,,显然不成立,故不成立;②当时,,∴解得:综上所述:或.故答案为:或.【题目点拨】本题考查含绝对值函数的最值问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意分段函数的最值求解.16、【解题分析】
利用等差数列前项和,可得;利用等差数列的性质可得,然后求解三角函数值即可.【题目详解】等差数列的前项和为,因为,所以;又,所以.故答案为:.【题目点拨】本题考查等差数列的前项和公式和等差数列的性质的应用,熟练掌握和若,则是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)不是“M函数”;(2),;(3).【解题分析】
由不满足,得不是“M函数”,可得函数的周期,,当时,当时,在上的单调递增区间:,由可得函数在上的图象,根据图象可得:当或1时,为常数有2个解,其和为当时,为常数有3个解,其和为.当时,为常数有4个解,其和为即可得当时,记关于x的方程为常数所有解的和为,【题目详解】不是“M函数”.,,不是“M函数”.函数满足,函数的周期,,当时,当时,,在上的单调递增区间:,;由可得函数在上的图象为:当或1时,为常数有2个解,其和为.当时,为常数有3个解,其和为.当时,为常数有4个解,其和为当时,记关于x的方程为常数所有解的和为,则.【题目点拨】本题考查了三角函数的图象、性质,考查了三角恒等变形,及三角函数型方程问题,属于难题.18、(1)对称轴为,最小正周期;(2)【解题分析】
(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.【题目详解】(1)令,则的对称轴为,最小正周期;(2)当时,,因为在单调递增,在单调递减,在取最大值,在取最小值,所以,所以.【题目点拨】本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.19、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解题分析】
(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【题目详解】(Ⅰ)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.(Ⅲ)存在点为中点时,满足平面;理由如下:分别取的中点,连接,在三角形中,且;在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;又平面,平面,所以平面.【题目点拨】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.20、(1);(2)12万元的毛利率更大【解题分析】
(1)根据题意代入数值分别算出与即可得解;(2)分别把与代入线性回归方程算出再算出毛利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 战略合作委托代理运输合同
- 销售代理合同模板
- 标准个人居间代理合同模板
- 超市兼职员工劳动合同范本
- 智能家居定制合同
- 技术服务合同意向协议书
- 食品进出口合同范本
- 家具维修与家庭生活习惯改变考核试卷
- 地震勘探仪器的采购与供应链管理策略考核试卷
- 木地板行业人力资源管理与培训考核试卷
- 微纳光学结构制造
- PEP四年级下册英语教案(表格)
- 中职语文教学
- 教培机构财务管理文件范本
- 医药行业:创新药产业链研究培训框架-20210807-中信建投-79正式版
- 2022四川能投宜宾市叙州电力有限公司招聘试题及答案解析
- 外部干扰排查流程及案例
- 商业银行信贷实务:第一章 商业银行信贷概述
- 小学2023-2024学年第二学期道德与法治教研组工作计划
- 地理人教版七年级下册亚洲的地形与河流课件
- 脓毒血症护理查房
评论
0/150
提交评论