2024届福建闽侯第六中学高一数学第二学期期末检测试题含解析_第1页
2024届福建闽侯第六中学高一数学第二学期期末检测试题含解析_第2页
2024届福建闽侯第六中学高一数学第二学期期末检测试题含解析_第3页
2024届福建闽侯第六中学高一数学第二学期期末检测试题含解析_第4页
2024届福建闽侯第六中学高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建闽侯第六中学高一数学第二学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,向量,则()A. B. C. D.2.南北朝数学家祖暅在推导球的体积公式时构造了一个中间空心的几何体,经后继学者改进后这个中间空心的几何体其三视图如图所示,下列那个值最接近该几何体的体积()A.8 B.12 C.16 D.243.已知实数满足且,则下列关系中一定正确的是()A. B. C. D.4.若是的重心,,,分别是角的对边,若,则角()A. B. C. D.5.已知变量,之间的线性回归方程为,且变量,之间的一组相关数据如下表所示,则下列说法中错误的是()681012632A.变量,之间呈现负相关关系B.的值等于5C.变量,之间的相关系数D.由表格数据知,该回归直线必过点6.下列两个变量之间的关系不是函数关系的是()A.出租车车费与出租车行驶的里程B.商品房销售总价与商品房建筑面积C.铁块的体积与铁块的质量D.人的身高与体重7.如图,为正方体,下面结论错误的是()A.异面直线与所成的角为45° B.平面C.平面平面 D.异面直线与所成的角为45°8.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18C.24 D.309.函数的图像关于直线对称,则的最小值为()A. B. C. D.110.在中,角、、所对的边长分别为,,,,,,则的面积为()A. B. C. D.9二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,点为延长线上一点,,连接,则=______.12.已知,,,的等比中项是1,且,,则的最小值是______.13.若直线y=x+m与曲线x=恰有一个公共点,则实数m的取值范围是______.14.已知在数列中,且,若,则数列的前项和为__________.15.执行如图所示的程序框图,则输出结果_____.16.设等比数列的前项和为,若,,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,渔船甲位于岛屿的南偏西方向的处,且与岛屿相距12海里,渔船乙以10海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.18.已知函数,(1)求的单调递增区间.(2)求在区间的最大值和最小值.19.如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.(1)证明:;(2)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值.20.已知函数(1)求的定义域;(2)设是第三象限角,且,求的值.21.高考改革是教育体制改革中的重点领域和关键环节,全社会极其关注.近年来,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目语文、数学、外语,“”指考生根据本人兴趣特长和拟报考学校及专业的要求,从物理、化学、生物、历史、政治、地理六科中选择门作为选考科目,其中语、数、外三门课各占分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.假定省规定:选考科目按考生成绩从高到低排列,按照占总体的,以此赋分分、分、分、分.为了让学生们体验“赋分制”计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单科全班排名,每名学生选三科计算成绩),已知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如下图所示,小明同学在这次考试中物理分,化学多分.(1)求小明物理成绩的最后得分;(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;(3)若小明必选物理,其他两科在剩下的五科中任选,求小明此次考试选考科目包括化学的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

根据平面向量的加法的几何意义、平面向量的基本定理、平面向量数乘运算的性质,结合进行求解即可.【题目详解】.故选:A【题目点拨】本题考查了平面向量基本定理及加法运算的几何意义,考查了平面向量数乘运算的性质,属于基础题.2、C【解题分析】

由三视图确定此几何体的结构,圆柱的体积减去同底同高的圆锥的体积即为所求.【题目详解】该几何体是一个圆柱挖掉一个同底同高的圆锥,圆柱底为2,高为2,所求体积为,所以C选项最接近该几何体的体积.故选:C【题目点拨】本题考查由三视图确定几何体的结构及求其体积,属于基础题.3、D【解题分析】

由已知得,然后根据不等式的性质判断.【题目详解】由且,,由得,A错;由得,B错;由于可能为0,C错;由已知得,则,D正确.故选:D.【题目点拨】本题考查不等式的性质,掌握不等式性质是解题关键,特别是性质:不等式两同乘以一个正数,不等号方向不变,不等式两边同乘以一个负数,不等号方向改变.4、D【解题分析】试题分析:由于是的重心,,,代入得,整理得,,因此,故答案为D.考点:1、平面向量基本定理;2、余弦定理的应用.5、C【解题分析】分析:根据平均数的计算公式,求得样本中心为,代入回归直线的方程,即可求解,得到样本中心,再根据之间的变化趋势,可得其负相关关系,即可得到答案.详解:由题意,根据上表可知,即数据的样本中心为,把样本中心代入回归直线的方程,可得,解得,则,即数据的样本中心为,由上表中的数据可判定,变量之间随着的增大,值变小,所以呈现负相关关系,由于回归方程可知,回归系数,而不是,所以C是错误的,故选C.点睛:本题主要考查了数据的平均数的计算公式,回归直线方程的特点,以及相关关系的判定等基础知识的应用,其中熟记回归分析的基本知识点是解答的关键,着重考查了分析问题和解答问题的能力.6、D【解题分析】

根据函数的概念来进行判断。【题目详解】对于A选项,出租车车费实行分段收费,与出租车行驶里程成分段函数关系;对于B选项,商品房的销售总价等于商品房单位面积售价乘以商品房建筑面积,商品房销售总价与商品房建筑面积之间是一次函数关系;对于C选项,铁块的质量等于铁块的密度乘以铁块的体积,铁块的体积与铁块的质量是一次函数关系;对于D选项,有些人又高又瘦,有些人又矮又胖,人的身高与体重之间没有必然联系,因人而异,D选项中两个变量之间的关系不是函数关系。故选:D。【题目点拨】本题考查函数概念的理解,充分理解两个变量之间是“一对一”或“多对一”的形式,考查学生对这些概念的理解,属于基础题。7、A【解题分析】

根据正方体性质,依次证明线面平行和面面平行,根据直线的平行关系求异面直线的夹角.【题目详解】根据正方体性质,,所以异面直线与所成的角等于,,,所以不等于45°,所以A选项说法不正确;,四边形为平行四边形,,平面,平面,所以平面,所以B选项说法正确;同理可证:平面,是平面内两条相交直线,所以平面平面,所以C选项说法正确;,异面直线与所成的角等于,所以D选项说法正确.故选:A【题目点拨】此题考查线面平行和面面平行的判定,根据平行关系求异面直线的夹角,考查空间线线平行和线面平行关系的掌握8、C【解题分析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为V=1考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.9、C【解题分析】

的对称轴为,化简得到得到答案.【题目详解】对称轴为:当时,有最小值为故答案选C【题目点拨】本题考查了三角函数的对称轴,将对称轴表示出来是解题的关键,意在考查学生对于三角函数性质的灵活运用.10、A【解题分析】

,利用正弦定理,和差公式化简可得,再利用三角形面积计算公式即可得出.【题目详解】化为:的面积故选:【题目点拨】本题考查正弦定理与两角和余弦公式化简求值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】

由题意,画出几何图形.由三线合一可求得,根据补角关系可求得.再结合余弦定理即可求得.【题目详解】在中,,作,如下图所示:由三线合一可知为中点则所以点为延长线上一点,则在中由余弦定理可得所以故答案为:【题目点拨】本题考查了等腰三角形性质,余弦定理在解三角形中的应用,属于基础题.12、4【解题分析】

,的等比中项是1,再用均值不等式得到答案.【题目详解】,的等比中项是1当时等号成立.故答案为4【题目点拨】本题考查了等比中项,均值不等式,意在考查学生的综合应用能力.13、{m|-1<m≤1或m=-}【解题分析】

由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,由此能求出实数m的取值范围.【题目详解】由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,从图上看出其三个极端情况分别是:①直线在第四象限与曲线相切,②交曲线于(0,﹣1)和另一个点,③与曲线交于点(0,1).直线在第四象限与曲线相切时解得m=﹣,当直线y=x+m经过点(0,1)时,m=1.当直线y=x+m经过点(0,﹣1)时,m=﹣1,所以此时﹣1<m≤1.综上满足只有一个公共点的实数m的取值范围是:﹣1<m≤1或m=﹣.故答案为:{m|-1<m≤1或m=-}.【题目点拨】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.14、【解题分析】

根据递推关系式可证得数列为等差数列,利用等差数列通项公式求得,得到,进而求得;利用裂项相消法求得结果.【题目详解】由得:数列是首项为,公差为的等差数列,即:设前项和为本题正确结果:【题目点拨】本题考查根据递推关系式证明数列为等差数列、等差数列通项的求解、裂项相消法求数列的前项和;关键是能够通过通项公式的形式确定采用的求和方法,属于常考题型.15、1【解题分析】

弄清程序框图的算法功能是解题关键.由模拟执行程序,可知,本程序的算法功能是计算的值,依据数列求和方法——并项求和,即可求出.【题目详解】根据程序框图,可得程序框图的功能是计算并输出,输出的为1.【题目点拨】本题主要考查了含有循环结构的程序框图的算法功能的理解以及数列求和的基本方法——并项求和法的应用.正确得到程序框图的算法功能,选择合适的求和方法是解题的关键.16、16【解题分析】

利用及可计算,从而可计算的值.【题目详解】因为,故,因为,故,故,故填16.【题目点拨】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)14海里/小时;(2).【解题分析】

(1),∴∴,∴V甲海里/小时;(2)在中,由正弦定理得∴∴.点评:主要是考查了正弦定理和余弦定理的运用,属于基础题.18、(1),;(2)最大值为,最小值为【解题分析】

利用二倍角公式、两角和差正弦公式和辅助角公式可化简出;(1)令,解出的范围即为所求单调递增区间;(2)利用的范围可求得所处的范围,整体对应正弦函数图象可确定最大值和最小值取得时的值,进而求得最值.【题目详解】(1)令,,解得:,的单调递增区间为,(2)当时,当时,取得最大值,最大值为当时,取得最小值,最小值为【题目点拨】本题考查正弦型函数单调区间和最值的求解问题,涉及到利用两角和差公式、二倍角公式和辅助角公式化简三角函数;关键是能够灵活应用整体对应的方式,结合正弦函数的图象与性质来进行求解.19、(1)见解析;(2)【解题分析】

(1)证明,利用平面即可证得,问题得证.(2)过点作于点,过点作于点,连接.当与垂直时,与平面所成最大角,利用该最大角的正切值为即可求得,证明就是二面角的一个平面角,解即可.【题目详解】(1)因为底面为菱形,所以为等边三角形,又为中点所以,又所以因为平面,平面所以,又所以平面(2)过点作于点,过点作于点,连接当与垂直时,与平面所成最大角.由(1)得,此时.所以就是与平面所成的角.在中,由题意可得:,又所以.设,在中由等面积法得:解得:,所以因为平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一个平面角因为为的中点,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值为【题目点拨】本题主要考查了线面垂直的证明,考查了转化能力,还考查了线面角知识,考查了二面角的平面角作法,考查空间思维能力及解三角形,考查了方程思想及计算能力,属于难题.20、(1)(2)【解题分析】

(1)由分母不为0可求得排烟阀;(2)由同角间的三角函数关系求得,由两角差的余弦公式展开,再由二倍角公式化为单角的函数,最后代入的值可得.【题目详解】(1)由得,,所以,,故的定义域为(答案写成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论