版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省卢氏县实验高中高一数学第二学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆的圆心坐标和半径分别为()A. B. C. D.2.已知角A满足,则的值为()A. B. C. D.3.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法,求某多项式值的一个实例,若输入的值分别为4和2,则输出的值为()A.32 B.64 C.65 D.1304.函数的定义域是().A. B. C. D.5.正三角形的边长为,如图,为其水平放置的直观图,则的周长为()A. B. C. D.6.如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n,落在正方形内的豆子数为m,则圆周率π的估算值是()A.nmB.2nmC.3n7.一元二次不等式的解集为()A. B.C. D.8.圆x-12+y-3A.1 B.2 C.2 D.39.若,则的最小值是()A. B. C. D.10.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量、满足:,,,则_________.12.不等式的解集为______.13.在中,两直角边和斜边分别为a,b,c,若则实数x的取值范围是________.14.已知,均为单位向量,它们的夹角为,那么__________.15.若数列满足,,则数列的通项公式______.16.已知点和在直线的两侧,则a的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为迎接世博会,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60000,四周空白的宽度为10cm,栏与栏之间的中缝空白的宽度为5cm,怎样确定广告矩形栏目高与宽的尺寸(单位:cm),能使整个矩形广告面积最小.18.已知在四棱锥中,底面是矩形,平面,,分别是,的中点,与平面所成的角的正切值是;(1)求证:平面;(2)求二面角的正切值.19.已知数列的前项和为(1)证明:数列是等差数列;(2)设,求数列的前2020项和.20.如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱锥P-ABC的体积;(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).21.如图几何体中,底面为正方形,平面,,且.(1)求证:平面;(2)求与平面所成角的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据圆的标准方程形式直接确定出圆心和半径.【题目详解】因为圆的方程为:,所以圆心为,半径,故选:B.【题目点拨】本题考查给定圆的方程判断圆心和半径,难度较易.圆的标准方程为,其中圆心是,半径是.2、A【解题分析】
将等式两边平方,利用二倍角公式可得出的值.【题目详解】,在该等式两边平方得,即,解得,故选A.【题目点拨】本题考查同角三角函数的基本关系,考查二倍角正弦公式的应用,一般地,解三角函数有关问题时,遇到,常用平方法来求解,考查计算能力,属于中等题.3、C【解题分析】程序运行循环时变量值为:;;;,退出循环,输出,故选C.4、C【解题分析】函数的定义域即让原函数有意义即可;原式中有对数,则故得到定义域为.故选C.5、C【解题分析】
根据斜二测画法以及正余弦定理求解各边长再求周长即可.【题目详解】由斜二测画法可知,,,.所以.故..故.所以的周长为.故选:C【题目点拨】本题主要考查了斜二测画法的性质以及余弦定理在求解三角形中线段长度的运用.属于基础题.6、B【解题分析】试题分析:设正方形的边长为2.则圆的半径为2,根据几何概型的概率公式可以得到mn=4考点:几何概型.【方法点睛】本题題主要考查“体积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题题的总体积(总空间)以及事件的体积(事件空间);几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.7、C【解题分析】
根据一元二次不等式的解法,即可求得不等式的解集,得到答案.【题目详解】由题意,不等式,即或,解得,即不等式的解集为,故选C.【题目点拨】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与计算能力,属于基础题.8、C【解题分析】
先计算圆心到y轴的距离,再利用勾股定理得到弦长.【题目详解】x-12+y-32=2圆心到y轴的距离d=1弦长l=2r故答案选C【题目点拨】本题考查了圆的弦长公式,意在考查学生的计算能力.9、A【解题分析】,则,当且仅当取等号.所以选项是正确的.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.10、B【解题分析】
根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【题目详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【题目点拨】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】
将等式两边平方得出的值,再利用结合平面向量的数量积运算律可得出结果.【题目详解】,,,因此,,故答案为.【题目点拨】本题考查利用平面向量数量积来计算平面向量的模,在计算时,一般将平面向量的模平方,利用平面向量数量积的运算律来进行计算,考查运算求解能力,属于中等题.12、【解题分析】
根据一元二次不等式的解法直接求解可得结果.【题目详解】由得:即不等式的解集为故答案为:【题目点拨】本题考查一元二次不等式的求解问题,属于基础题.13、【解题分析】
计算得到,根据得到范围.【题目详解】两直角边和斜边分别为a,b,c,则,则,则,故.故答案为:.【题目点拨】本题考查了正弦定理和三角函数的综合应用,意在考查学生的综合应用能力.14、.【解题分析】分析:由,均为单位向量,它们的夹角为,求出数量积,先将平方,再开平方即可的结果.详解:∵,故答案为.点睛:平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).15、【解题分析】
在等式两边取倒数,可得出,然后利用等差数列的通项公式求出的通项公式,即可求出.【题目详解】,等式两边同时取倒数得,.所以,数列是以为首项,以为公差的等差数列,.因此,.故答案为:.【题目点拨】本题考查利用倒数法求数列通项,同时也考查了等差数列的定义,考查计算能力,属于中等题.16、【解题分析】试题分析:若点A(3,1)和点B(4,6)分别在直线3x-2y+a=0两侧,则将点代入直线中是异号,则[3×3-2×1+a]×[3×4-2×6+a]<0,即(a+7)a<0,解得-7<a<0,故填写-7<a<0考点:本试题主要考查了二元一次不等式与平面区域的运用.点评:解决该试题的关键是根据A、B在直线两侧,则A、B坐标代入直线方程所得符号相反构造不等式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、高200,宽100【解题分析】
设广告矩形栏目高与宽分别为acm,cm整个矩形广告面积为当且仅当时取等号18、(1)见证明;(2)【解题分析】
(1)取的中点,连接,通过证明四边形是平行四边形,证得,从而证得平面.(2)连接,证得为与平面所成角.根据的值求得的长,作出二面角的平面角并证明,解直角三角形求得二面角的正切值.【题目详解】(1)证明:取的中点,连接.∵是中点∴又是的中点,∴∴,从而四边形是平行四边形,故又平面,平面,∴(2)∵平面,∴是在平面内的射影为与平面所成角,四边形为矩形,∵,∴,∴过点作交的延长线于,连接,∵平面据三垂线定理知.∴是二面角的平面角易知道为等腰直角三角形,∴∴=∴二面角的正切值为【题目点拨】本小题主要考查线面平行的证明,考查线面角的定义和应用,考查面面角的正切值的求法,考查逻辑推理能力和空间想象能力,属于中档题.19、(1)见解析;(2)3030【解题分析】
(1)当时,可求出首项,当时,利用即可求出通项公式,进而证明是等差数列;(2)可将奇数项和偶数项合并求和即可得到答案.【题目详解】(1)当时,当时,综上,.因为,所以是等差数列.(2)法一:,的前2020项和为:法二:,的前2020项和为:.【题目点拨】本题主要考查等差数列的证明,分组求和的相关计算,意在考查学生的分析能力和计算能力,难度中等.20、(1);(2).【解题分析】
(1),三棱锥P-ABC的体积为.(2)取PB的中点E,连接DE、AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.在三角形ADE中,DE=2,AE=,AD=2,,所以∠ADE=.因此,异面直线BC与AD所成的角的大小是.21、(1)见解析(2)【解题分析】
(1)由,,结合面面平行判定定理可证得平面平面,根据面面平行的性质证得结论;(2)连接交于点,连接,利用线面垂直的判定定理可证得平面,从而可知所求角为,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度码头租赁及港口船舶代理及维修服务合同3篇
- 2025年度充电桩场地租赁与广告位合作合同范本4篇
- 二零二五苗木种植项目融资与承包合作协议4篇
- 《安装规范》课件
- 2025年度海洋工程沉降观测与海洋资源合同4篇
- 2024版股权交易全面协议3篇
- 2025年度超限大件运输保险合同模板详细说明4篇
- 二零二五年度智能汽车安全责任免责协议4篇
- 2025年度旅游线路组合促销合同3篇
- 二零二五版社区门诊合作经营管理合同4篇
- 高二物理竞赛霍尔效应 课件
- 金融数学-(南京大学)
- 基于核心素养下的英语写作能力的培养策略
- 现场安全文明施工考核评分表
- 亚什兰版胶衣操作指南
- 四年级上册数学教案 6.1口算除法 人教版
- DB32-T 3129-2016适合机械化作业的单体钢架塑料大棚 技术规范-(高清现行)
- 6.农业产值与增加值核算统计报表制度(2020年)
- 人工挖孔桩施工监测监控措施
- 供应商物料质量问题赔偿协议(终端)
- 物理人教版(2019)必修第二册5.2运动的合成与分解(共19张ppt)
评论
0/150
提交评论