2024届江西省临川高一数学第二学期期末检测模拟试题含解析_第1页
2024届江西省临川高一数学第二学期期末检测模拟试题含解析_第2页
2024届江西省临川高一数学第二学期期末检测模拟试题含解析_第3页
2024届江西省临川高一数学第二学期期末检测模拟试题含解析_第4页
2024届江西省临川高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省临川高一数学第二学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为,则第八个单音的频率为()A. B. C. D.2.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为()A.54 B. C.90 D.813.某几何体的三视图如图所示(实线部分),若图中小正方形的边长均为1,则该几何体的体积是()A. B. C. D.4.设点,,若直线与线段没有交点,则的取值范围是A. B. C. D.5.若变量满足约束条件,则的最大值是()A.0 B.2 C.5 D.66.已知命题,则命题的否定为()A. B.C. D.7.在正四棱柱,,则异面直线与所成角的余弦值为A. B. C. D.8.在长方体中,,,则直线与平面所成角的正弦值为()A. B. C. D.9.若,直线的倾斜角等于()A. B. C. D.10.在数列{an}中,an=31﹣3n,设bn=anan+1an+2(n∈N*).Tn是数列{bn}的前n项和,当Tn取得最大值时n的值为()A.11 B.10 C.9 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.在中,若,则____________.12.若正实数满足,则的最大值为__________.13.已知点在直线上,则的最小值为__________.14.化简:.15.某工厂生产三种不同型号的产品,产品数量之比依次为,现用分层抽样方法抽出一个容量为的样本,样本中种型号产品有16件,那么此样本的容量=16.关于的方程()的两虚根为、,且,则实数的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,a=7,b=8,cosB=–.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.19.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.20.已知菱形ABCD的边长为2,M为BD上靠近D的三等分点,且线段.(1)求的值;(2)点P为对角线BD上的任意一点,求的最小值.21.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.(1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?(2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

根据等比数列通项公式,求得第八个单音的频率.【题目详解】根据等比数列通项公式可知第八个单音的频率为.故选:B.【题目点拨】本小题主要考查等比数列的通项公式,考查中国古代数学文化,属于基础题.2、A【解题分析】

由已知中的三视图可得:该几何体是一个以正方形为底面的斜四棱柱,进而得到答案.【题目详解】由三视图可知,该多面体是一个以正方形为底面的斜四棱柱,四棱柱的底面是边长为3的正方形,四棱柱的高为6,则该多面体的体积为.故选:A.【题目点拨】本题考查三视图知识及几何体体积的计算,根据三视图判断几何体的形状,再由几何体体积公式求解,属于简单题.3、A【解题分析】

由三视图得出原几何体是由半个圆锥与半个圆柱组成的组合体,并且由三视图得出圆柱和圆锥的底面半径,圆锥的高,圆柱的高,再由圆柱和圆锥的体积公式得解.【题目详解】由三视图可知,几何体是由半个圆锥与半个圆柱组成的组合体,其中圆柱和圆锥的底面半径,圆锥的高,圆柱的高所以圆柱的体积,圆锥的体积,所以组合体的体积.故选B.【题目点拨】本题主要考查空间几何体的三视图和空间几何体圆柱和圆锥的体积,属于基础题.4、B【解题分析】直线恒过点且斜率为由图可知,且故选点睛:本题主要考查了两条直线的交点坐标,直线恒过点,直线与线段没有交点转化为过定点的直线与线段无公共点,作出图象,由图求解即可.5、C【解题分析】

由题意作出不等式组所表示的平面区域,将化为,相当于直线的纵截距,由几何意义可得结果.【题目详解】由题意作出其平面区域,令,化为,相当于直线的纵截距,由图可知,,解得,,则的最大值是,故选C.【题目点拨】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6、C【解题分析】

根据全称命题的否定是特称命题,可直接得出结果.【题目详解】命题“”的否定是“”.故选C【题目点拨】本题主要考查全称命题的否定,只需改量词和结论即可,属于基础题型.7、A【解题分析】

作出两异面直线所成的角,然后由余弦定理求解.【题目详解】在正四棱柱中,则异面直线与所成角为或其补角,在中,,,.故选A.【题目点拨】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角,然后通过解三角形求之.8、D【解题分析】

由题意,由于图形中已经出现了两两垂直的三条直线,所以可以利用空间向量的方法求解直线与平面所成的夹角.【题目详解】解:以点为坐标原点,以所在的直线为轴、轴、轴,建立空间直角坐标系,

则,

为平面的一个法向量.

∴直线与平面所成角的正弦值为.故选:D.【题目点拨】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系,利用向量方法解决立体几何问题.9、A【解题分析】

根据以及可求出直线的倾斜角.【题目详解】,,且直线的斜率为,因此,直线的倾斜角为.故选:A.【题目点拨】本题考查直线倾斜角的计算,要熟悉斜率与倾斜角之间的关系,还要根据倾斜角的取值范围来求解,考查计算能力,属于基础题.10、B【解题分析】

由已知得到等差数列的公差,且数列的前11项大于1,自第11项起小于1,由,得出从到的值都大于零,时,时,,且,而当时,,由此可得答案.【题目详解】由,得,等差数列的公差,由,得,则数列的前11项大于1,自第11项起小于1.由,可得从到的值都大于零,当时,时,,且,当时,,所以取得最大值时的值为11.故选:B.【题目点拨】本题主要考查了数列递推式,以及数列的和的最值的判定,其中解答的关键是明确数列的项的特点,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】

根据正弦定理角化边可得答案.【题目详解】由正弦定理可得.故答案为:2【题目点拨】本题考查了正弦定理角化边,属于基础题.12、【解题分析】

可利用基本不等式求的最大值.【题目详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【题目点拨】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.13、5【解题分析】

由题得表示点到点的距离,再利用点到直线的距离求解.【题目详解】由题得表示点到点的距离.又∵点在直线上,∴的最小值等于点到直线的距离,且.【题目点拨】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.14、0【解题分析】原式=+=-sinα+sinα=0.15、1.【解题分析】

解:A种型号产品所占的比例为2/(2+3+5)=2/10,16÷2/10=1,故样本容量n=1,16、5【解题分析】

关于方程两数根为与,由根与系数的关系得:,,由及与互为共轭复数可得答案.【题目详解】解:与是方程的两根由根与系数的关系得:,,由与为虚数根得:,,则,解得,经验证,符合要求,故答案为:.【题目点拨】本题考查根与系数的关系的应用.求解是要注意与为虚数根情形,否则漏解,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)∠A=(2)AC边上的高为【解题分析】分析:(1)先根据平方关系求,再根据正弦定理求,即得;(2)根据三角形面积公式两种表示形式列方程,再利用诱导公式以及两角和正弦公式求,解得边上的高.详解:解:(1)在△ABC中,∵cosB=–,∴B∈(,π),∴sinB=.由正弦定理得=,∴sinA=.∵B∈(,π),∴A∈(0,),∴∠A=.(2)在△ABC中,∵sinC=sin(A+B)=sinAcosB+sinBcosA==.如图所示,在△ABC中,∵sinC=,∴h==,∴AC边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.18、(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解题分析】

试题分析:(Ⅰ)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(Ⅱ)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(Ⅲ)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.试题解析:(Ⅰ)因为,所以……..4分)(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为………8分(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×40=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为考点:1.频率分布直方图;2.概率和频率的关系;3.古典概型.【名师点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.19、(1),,(2)猜想:,证明见解析【解题分析】

(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【题目详解】解:(1),∴,,;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,,即时结论成立.综上,对时结论成立.【题目点拨】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题20、(1),(2)【解题分析】

(1)由结合,可求出,从而得到(2)建立直角坐标系,设,可得到,然后利用二次函数的知识求出最小值【题目详解】(1)如图,四边形ABCD为菱形,所以所以因为,所以可解得,所以所以是等边三角形,故(2)以A为原点,所在直线为x轴建立如图所示坐标系:则有,所以线段:设,则有,所以因为,所以当时取得最小值【题目点拨】本题考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论