




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省北镇市中学数学高一第二学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在各项均为正数的等比数列中,若,则()A.1 B.4C.2 D.2.在中,内角、、所对的边分别为、、,且,则下列关于的形状的说法正确的是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定3.已知球的直径SC=4,A,B是该球球面上的两点,AB=1.∠ASC=∠BSC=45°则棱锥S—ABC的体积为()A. B. C. D.4.《五曹算经》是我国南北朝时期数学家甄鸾为各级政府的行政人员编撰的一部实用算术书.其第四卷第九题如下:“今有平地聚粟,下周三丈高四尺,问粟几何?”其意思为“场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的体积约为1.62立方尺,圆周率约为3,估算出堆放的稻谷约有()A.57.08斜 B.171.24斛 C.61.73斛 D.185.19斛5.当点到直线的距离最大时,m的值为()A.3 B.0 C. D.16.下列平面图形中,通过围绕定直线旋转可得到如图所示几何体的是()A. B. C. D.7.设为正数,为的等差中项,为的等比中项,则与的大小关为()A. B. C. D.8.(卷号)2397643038875648(题号)2398229448728576(题文)已知直线、,平面、,给出下列命题:①若,,且,则;②若,,且,则;③若,,且,则;④若,,且,则.其中正确的命题是()A.①② B.③④ C.①④ D.②③9.已知数列满足,,则()A.1024 B.2048 C.1023 D.204710.若,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,已知M是AB边所在直线上一点,满足,则________.12.已知中,内角A,B,C的对边分别为a,b,c,,,则的面积为______;13.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为________.14.若数列满足,则_____.15.已知圆锥的底面半径为3,体积是,则圆锥侧面积等于___________.16.已知扇形的圆心角为,半径为,则扇形的面积.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.18.已知函数的最小正周期为,且直线是其图象的一条对称轴.(1)求函数的解析式;(2)在中,角、、所对的边分别为、、,且,,若角满足,求的取值范围;(3)将函数的图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数记作,已知常数,,且函数在内恰有个零点,求常数与的值.19.设数列满足,.(1)求数列的通项公式;(2)令,求数列的前项和.20.在直三棱柱中,,,,分别是,的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.21.已知数列的前项和为,点在直线上.(1)求数列的通项公式;(2)设,若数列的前项和为,求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】试题分析:由题意得,根据等比数列的性质可知,又因为,故选C.考点:等比数列的性质.2、B【解题分析】
利用三角形的正、余弦定理判定.【题目详解】在中,内角、、所对的边分别为、、,且,由正弦定理得,得,则,为直角三角形.故选B【题目点拨】本题考查了三角形正弦定理的应用,属于基础题.3、C【解题分析】如图所示,由题意知,在棱锥SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中点D,易证SC垂直于面ABD,因此棱锥SABC的体积为两个棱锥SABD和CABD的体积和,所以棱锥SABC的体积V=SC·S△ADB=×4×=.4、C【解题分析】
根据圆锥的周长求出底面半径,再计算圆锥的体积,从而估算堆放的稻谷数.【题目详解】设圆锥形稻谷堆的底面半径为尺,则底面周长为尺,解得尺,又高为尺,所以圆锥的体积为(立方尺);又(斛,所以估算堆放的稻谷约有61.73(斛.故选:.【题目点拨】本题考查了椎体的体积计算问题,也考查了实际应用问题,是基础题.5、C【解题分析】
求得直线所过的定点,当和直线垂直时,距离取得最大值,根据斜率乘积等于列方程,由此求得的值.【题目详解】直线可化为,故直线过定点,当和直线垂直时,距离取得最大值,故,故选C.【题目点拨】本小题主要考查含有参数的直线过定点的问题,考查点到直线距离的最值问题,属于基础题.6、B【解题分析】A.是一个圆锥以及一个圆柱;C.是两个圆锥;D.一个圆锥以及一个圆柱;所以选B.7、B【解题分析】
由等差中项及等比中项的运算可得,,再结合即可得解.【题目详解】解:因为为正数,为的等差中项,为的等比中项,则,,又,当且仅当时取等号,又,所以,故选:B.【题目点拨】本题考查了等差中项及等比中项的运算,重点考查了重要不等式的应用,属基础题.8、C【解题分析】
逐一判断各命题的正误,可得出结论.【题目详解】对于命题①,若,,且,则,该命题正确;对于命题②,若,,且,则与平行或相交,该命题错误;对于命题③,若,,且,则与平行、垂直或斜交,该命题错误;对于命题④,若,,且,则,该命题正确.故选:C.【题目点拨】本题考查线面、面面位置关系有关命题真假的判断,在判断时,可充分利用线面、面面平行或垂直的判定与性质定理,也可以结合几何体模型进行判断,考查推理能力,属于中等题.9、C【解题分析】
根据叠加法求结果.【题目详解】因为,所以,因此,选C.【题目点拨】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.10、D【解题分析】
由于,,,,利用“平方关系”可得,,变形即可得出.【题目详解】∵,,∴,∴.∵,∴,∵,∴.∴.故选D.【题目点拨】本题考查了两角和的余弦公式、三角函数同角基本关系式、拆分角等基础知识与基本技能方法,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】
由M在AB边所在直线上,则,又,然后将,都化为,即可解出答案.【题目详解】因为M在直线AB上,所以可设,
可得,即,又,则由与不共线,所以,解得.故答案为:3【题目点拨】本题考查向量的减法和向量共线的利用,属于基础题.12、【解题分析】
先根据以及余弦定理计算出的值,再由面积公式即可求解出的面积.【题目详解】因为,所以,所以,所以.故答案为:.【题目点拨】本题考查解三角形中利用余弦定理求角以及面积公式的运用,难度较易.三角形中,已知两边的乘积和第三边所对的角即可利用面积公式求解出三角形面积.13、【解题分析】
利用来求的通项.【题目详解】,化简得到,填.【题目点拨】一般地,如果知道的前项和,那么我们可利用求其通项,注意验证时,(与有关的解析式)的值是否为,如果是,则,如果不是,则用分段函数表示.14、【解题分析】
由递推公式逐步求出.【题目详解】.故答案为:【题目点拨】本题考查数列的递推公式,属于基础题.15、【解题分析】试题分析:求圆锥侧面积必须先求圆锥母线,既然已知体积,那么可先求出圆锥的高,再利用圆锥的性质(圆锥的高,底面半径,母线组成直角三角形)可得母线,,,,.考点:圆锥的体积与面积公式,圆锥的性质.16、【解题分析】试题分析:由题可知,;考点:扇形面积公式三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)0.【解题分析】
(1)药物在白鼠血液内的浓度y与时间t的关系为:当a=1时,y=y1+y2;①当0<t<1时,y=﹣t4=﹣()2,所以ymax=f();②当1≤t≤3时,∵,所以ymax=7﹣2(当t时取到),因为,故ymax=f().(2)由题意y①⇒⇒,又0<t<1,得出a≤1;②⇒⇒由于1≤t≤3得到,令,则,所以,综上得到以0.18、(1);(2);(3),.【解题分析】
(1)由函数的周期公式可求出的值,求出函数的对称轴方程,结合直线为一条对称轴结合的范围可得出的值,于此得出函数的解析式;(2)由得出,再由结合锐角三角函数得出,利用正弦定理以及内角和定理得出,由条件得出,于此可计算出的取值范围;(3)令,得,换元得出,得出方程,设该方程的两根为、,由韦达定理得出,分(ii)、;(ii),;(iii),三种情况讨论,计算出关于的方程在一个周期区间上的实根个数,结合已知条件得出与的值.【题目详解】(1)由三角函数的周期公式可得,,令,得,由于直线为函数的一条对称轴,所以,,得,由于,,则,因此,;(2),由三角形的内角和定理得,.,且,,.,由,得,由锐角三角函数的定义得,,由正弦定理得,,,,且,,,.,因此,的取值范围是;(3)将函数的图象向右平移个单位,得到函数,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数为,,令,可得,令,得,,则关于的二次方程必有两不等实根、,则,则、异号,(i)当且时,则方程和在区间均有偶数个根,从而方程在也有偶数个根,不合乎题意;(ii)当,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区间上只有一个根,在区间上无实解,方程在区间上无实数解,在区间上有两个根,因此,关于的方程在区间上有个根,在区间上有个根,不合乎题意;(iii)当时,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区间上无实数根,在区间上只有一个实数根,方程在区间上有两个实数解,在区间上无实数解,因此,关于的方程在区间上有个根,在区间上有个根,此时,,得.综上所述:,.【题目点拨】本题考查利用三角函数的性质求三角函数的解析式,以及三角形中的取值范围问题,以及三角函数零点个数问题,同时也涉及了复合函数方程解的个数问题,考查分类讨论思想的应用,综合性较强,属于难题.19、【解题分析】试题分析:(1)结合数列递推公式形式可知采用累和法求数列的通项公式,求解时需结合等比数列求和公式;(2)由得数列的通项公式为,求和时采用错位相减法,在的展开式中两边同乘以4后,两式相减可得到试题解析:(1)由已知,当时,==,.而,所以数列的通项公式为.(2)由知…①……7分从而……②①②得,即.考点:1.累和法求数列通项公式;2.错位相减法求和20、(1)证明见解析。(2)【解题分析】
(1)首先根据已知得到,再根据线面平行的判定即可得到平面.(2)首先根据线面垂直的判定证明平面,即可找到为与平面所成角,在计算其正弦值即可.【题目详解】(1)因为分别是,的中点,所以四边形为平行四边形,即.平面,所以平面.(2)因为,为中点,所以.平面.所以为与平面所成角.在中,,,所以,.在中,,,所以.【题目点拨】本题第一问考查线面平行的判定,本题第二问考查线面成角,属于中档题.21、(1)(2)见解析【解题分析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 徐州酒店整改方案(3篇)
- 工会食堂账务管理制度
- 固废处理公司管理制度
- 国企开发公司管理制度
- 宾馆隔离日常管理制度
- 农村烟花日常管理制度
- 公司电器节能管理制度
- 学校物料发放管理制度
- DB62T 4495-2022 苹果矮化自根砧脱毒苗木繁育技术规程
- DB62T 4459-2021 小麦品种 甘春32号
- 物业服务费用收支情况明细表
- Lazada官方跨境电商运营全书
- 海南省近5年中考语文作文真题及模拟题汇编(含参考例文)
- 价值流PSI拉动畅流
- 金属百叶窗安装方案
- 电厂锅炉炉膛内脚手架施工方案
- 木家具制造工艺学-南京林业大学中国大学mooc课后章节答案期末考试题库2023年
- 大数据与法律检索-湖南师范大学中国大学mooc课后章节答案期末考试题库2023年
- 天然气安全技术说明书MSDS
- 老旧住宅屋面防水工程施工方案
- 内科-心内简答题(干货分享)
评论
0/150
提交评论