版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省双流艺体中学数学高一下期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的顶点与原点重合,始边与轴非负半轴重合,终边过点,则()A. B. C. D.2.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数的部分图象大致是()A. B.C. D.3.若,且,则“”是“函数有零点”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.如图,在三棱柱中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则与平面所成的角为()A. B. C. D.5.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则6.已知直线,若,则的值为()A.8 B.2 C. D.-27.已知,则的垂直平分线所在直线方程为()A. B.C. D.8.对任意实数x,表示不超过x的最大整数,如,,关于函数,有下列命题:①是周期函数;②是偶函数;③函数的值域为;④函数在区间内有两个不同的零点,其中正确的命题为()A.①③ B.②④ C.①②③ D.①②④9.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.400,40 B.200,10 C.400,80 D.200,2010.直线上的点到圆上点的最近距离为()A. B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.数列的前项和为,,且(),记,则的值是________.12.已知三点、、共线,则a=_______.13.已知椭圆的右焦点为,过点作圆的切线,若两条切线互相垂直,则_____________.14.某学校成立了数学,英语,音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图.现随机选取一个成员,他恰好只属于2个小组的概率是____.15.数列定义为,则_______.16.设直线与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且,.(1)求,的值及的定义域;(2)若存在,使得成立,求实数的取值范围.18.在锐角中,,,分别为内角,,所对的边,且满足.(1)求角的大小;(2)若,,求的面积.19.数列满足:.(1)求证:为等比数列;(2)求的通项公式.20.若,解关于的不等式.21.已知四棱锥的底面是菱形,底面,是上的任意一点求证:平面平面设,求点到平面的距离在的条件下,若,求与平面所成角的正切值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
利用三角函数定义即可求得:,,再利用余弦的二倍角公式得解.【题目详解】因为角的终边过点,所以点到原点的距离所以,所以故选C【题目点拨】本题主要考查了三角函数定义及余弦的二倍角公式,考查计算能力,属于较易题.2、D【解题分析】
根据函数的性质以及特殊位置即可利用排除法选出正确答案.【题目详解】因为函数定义域为,关于原点对称,而,所以函数为奇函数,其图象关于原点对称,故排除A,C;又因为,故排除B.故选:D.【题目点拨】本题主要考查函数图象的识别,涉及余弦函数性质的应用,属于基础题.3、A【解题分析】
结合函数零点的定义,利用充分条件和必要条件的定义进行判断,即可得出答案.【题目详解】由题意,当时,,函数与有交点,故函数有零点;当有零点时,不一定取,只要满足都符合题意.所以“”是“函数有零点”的充分不必要条件.故答案为:A【题目点拨】本题主要考查了函数零点的概念,以及对数函数的图象与性质的应用,其中解答中熟记函数零点的定义,以及对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解题分析】
取的中点,连接、,作,垂足为点,证明平面,于是得出直线与平面所成的角为,然后利用锐角三角函数可求出.【题目详解】如下图所示,取的中点,连接、,作,垂足为点,是边长为的等边三角形,点为的中点,则,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直线与平面所成的角为,易知,在中,,,,,,即直线与平面所成的角为,故选A.【题目点拨】本题考查直线与平面所成角的计算,求解时遵循“一作、二证、三计算”的原则,一作的是过点作面的垂线,有时也可以通过等体积法计算出点到平面的距离,利用该距离与线段长度的比值作为直线与平面所成角的正弦值,考查计算能力与推理能力,属于中等题.5、C【解题分析】
在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【题目详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.6、D【解题分析】
根据两条直线垂直,列方程求解即可.【题目详解】由题:直线相互垂直,所以,解得:.故选:D【题目点拨】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.7、A【解题分析】
首先根据题中所给的两个点的坐标,应用中点坐标公式求得线段的中点坐标,利用两点斜率坐标公式求得,利用两直线垂直时斜率的关系,求得其垂直平分线的斜率,利用点斜式写出直线的方程,化简求得结果.【题目详解】因为,所以其中点坐标是,又,所以的垂直平分线所在直线方程为,即,故选A.【题目点拨】该题考查的是有关线段的垂直平分线的方程的问题,在解题的过程中,需要明确线段的垂直平分线的关键点一是垂直,二是平分,利用相关公式求得结果.8、A【解题分析】
根据的表达式,结合函数的周期性,奇偶性和值域分别进行判断即可得到结论.【题目详解】是周期函数,3是它的一个周期,故①正确.,结合函数的周期性可得函数的值域为,则函数不是偶函数,故②错误.,故在区间内有3个不同的零点,故④错误.故选:A【题目点拨】本题考查了取整函数综合问题,考查了学习综合分析,转化与划归,数学运算的能力,属于难题.9、A【解题分析】
由扇形图能得到总数,利用抽样比较能求出样本容量;由分层抽样和条形图能求出抽取的高中生近视人数.【题目详解】用分层抽样的方法抽取的学生进行调查,样本容量为:,抽取的高中生近视人数为:,故选A.【题目点拨】该题考查的是有关概率统计的问题,涉及到的知识点有扇形图与条形图的应用,以及分层抽样的性质,注意对基础知识的灵活应用,属于简单题目.10、C【解题分析】
求出圆心和半径,求圆心到直线的距离,此距离减去半径即得所求的结果.【题目详解】将圆化为标准形式可得可得圆心为,半径,而圆心到直线距离为,
因此圆上点到直线的最短距离为,故选:C.【题目点拨】本题考查直线和圆的位置关系,点到直线的距离公式的应用,求圆心到直线的距离是解题的关键,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】
由已知条件推导出是首项为,公比为的等比数列,由此能求出的值.【题目详解】解:因为数列的前项和为,,且(),,.即,.是首项为,公比为的等比数列,故答案为:【题目点拨】本题考查数列的前项和的求法,解题时要注意等比数列的性质的合理应用,属于中档题.12、【解题分析】
由三点、、共线,则有,再利用向量共线的坐标运算即可得解.【题目详解】解:由、、,则,,又三点、、共线,则,则,解得:,故答案为:.【题目点拨】本题考查了向量共线的坐标运算,属基础题.13、【解题分析】
首先分析直线与圆的位置关系,然后结合已知可判断四边形的形状,得出的比值,最后得到答案.【题目详解】设切点为,根据已知两切线垂直,四边形是正方形,,根据,可得.故填:.【题目点拨】本题考查了直线与圆的几何性质,以及椭圆的性质,考查了转化与化归的能力,属于基础题型.14、【解题分析】
由题中数据,确定课外小组的总人数,以及恰好属于2个小组的人数,人数比即为所求概率.【题目详解】由题意可得,课外小组的总人数为,恰好属于2个小组的人数为,所以随机选取一个成员,他恰好只属于2个小组的概率是.故答案为【题目点拨】本题主要考查古典概型,熟记列举法求古典概型的概率即可,属于常考题型.15、【解题分析】
由已知得两式,相减可发现原数列的奇数项和偶数项均为等差数列,分类讨论分别算出奇数项的和和偶数项的和,再相加得原数列前的和【题目详解】两式相减得数列的奇数项,偶数项分别成等差数列,,,,数列的前2n项中所有奇数项的和为:,数列的前2n项中所有偶数项的和为:【题目点拨】对于递推式为,其特点是隔项相减为常数,这种数列要分类讨论,分偶数项和奇数项来研究,特别注意偶数项的首项为,而奇数项的首项为.16、【解题分析】因为圆心坐标与半径分别为,所以圆心到直线的距离,则,解之得,所以圆的面积,应填答案.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,定义域;(2)【解题分析】
(1)由已知得,可求出、,由对数函数的定义域可得,求出的范围,即可得到的定义域;(2)设,可得,由复合函数单调性,可得在上的单调性,从而可得时,的最大值,令,解不等式即可得到答案.【题目详解】(1)由已知得,即,解得,,由得,所以,即,所以定义域为.(2),设,由时,可得,因为在上单调递增,所以可得在上单调递增,故当时,的最大值为,由题意,,即,即,因为,所以,即.故时,存在,使得成立.【题目点拨】本题考查对数函数的性质,考查复合函数单调性,考查存在性问题,考查学生的计算能力与推理能力,属于中档题.18、(1);(2).【解题分析】
(1)利用正弦定理化简已知的等式,根据sinA不为0,可得出sinB的值,由B为锐角,利用特殊角的三角函数值,即可求出B的度数;(2)由b及cosB的值,利用余弦定理列出关于a与c的关系式,利用完全平方公式变形后,将a+c的值代入,求出ac的值,将a+c=5与ac=6联立,并根据a大于c,求出a与c的值,再由a,b及c的值,利用余弦定理求出cosA的值,将b,c及cosA的值代入即可求出值.【题目详解】(1),由正弦定理得,所以,因为三角形ABC为锐角三角形,所以.(2)由余弦定理得,,所以所以.19、(1)见解析(2)【解题分析】
(1)证明和的比是定值,即得;(2)由(1)的通项公式入手,即得。【题目详解】(1)由题得,,即有,相邻两项之比为定值3,故为公比的等比数列;(2)因为为等比数列,且,则有,整理得的通项公式为.【题目点拨】本题考查等比数列的概念,以及求数列的通项公式,是基础题。20、当0<a<1时,原不等式的解集为,当a<0时,原不等式的解集为;当a=0时,原不等式的解集为⌀.【解题分析】
试题分析:(1),利用,可得,分三种情况对讨论的范围:0<a<1,a<0,a=0,分别求得相应情况下的解集即可.试题解析:不等式>1可化为>0.因为a<1,所以a-1<0,故原不等式可化为<0.故当0<a<1时,原不等式的解集为,当a<0时,原不等式的解集为,当a=0时,原不等式的解集为⌀.21、(1)见解析(2)(3)【解题分析】
(1)由平面,得出,由菱形的性质得出,利用直线与平面垂直的判定定理得出平面,再利用平面与平面垂直的判定定理可证出结论;(2)先计算出三棱锥的体积,并计算出的面积,利用等体积法计算出三棱锥的高,即为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《浓度对化学平衡影响的探究》教学设计
- 一年级数学(上)计算题专项练习汇编
- 荆楚理工学院《数字影像包装》2022-2023学年第一学期期末试卷
- 高二历史教案
- 黑龙江省哈尔滨市呼兰区多校2024-2025学年六年级上学期期中语文试卷
- 陕西省宝鸡市陈仓区2024-2025学年八年级上学期期中生物学试题(含答案)
- 湖北省孝感市孝南区2024-2025学年七年级上学期期中地理试题(含答案)
- 急救用骨盆夹产业规划专项研究报告
- 医用足底按摩拖鞋市场需求与消费特点分析
- 握笔器产业运行及前景预测报告
- 接待与会务工作礼仪培训及规范-PPT课件
- 九年级思想品德课试卷讲评课PPT精选文档课件
- 教练技术一阶段讲义(共59页)
- 《保险学》01
- 2020年住房和城乡建设行业人员继续教育(八大员继续教育)土建质量员继续教育考试题库集
- 小学一年级上册数学20以内进位加法单元测试卷1
- 船舶系固设备
- 超声病例讨论.ppt
- 岩金矿地质勘查规范
- 不锈钢饰面安装施工工艺标准
- 简版个人征信报告模板
评论
0/150
提交评论