版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省卢氏实验高中2024届数学高一第二学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在数列中,,且数列是等比数列,其公比,则数列的最大项等于()A. B. C.或 D.2.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}3.已知数列的通项公式,前项和为,则关于数列、的极限,下面判断正确的是()A.数列的极限不存在,的极限存在B.数列的极限存在,的极限不存在C.数列、的极限均存在,但极限值不相等D.数列、的极限均存在,且极限值相等4.若,则的最小值是()A. B. C. D.5.若三角形三边的长度为连续的三个自然数,则称这样的三角形为“连续整边三角形”.下列说法正确的是()A.“连续整边三角形”只能是锐角三角形B.“连续整边三角形”不可能是钝角三角形C.若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形有且仅有1个D.若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形可能有2个6.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度().A. B. C. D.7.已知,且,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则()A.7 B.6 C.5 D.98.设是等差数列的前项和,若,则A. B. C. D.9.“”是“直线:与直线:垂直”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件10.已知向量满足.为坐标原点,.曲线,区域.若是两段分离的曲线,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在《九章算术·商功》中将四个面均为直角三角形的三棱锥称为鳖臑(biēnào),在如下图所示的鳖臑中,,,,则的直角顶点为______.12.若角的终边经过点,则______.13.已知x、y满足约束条件,则的最小值为________.14.在上定义运算,则不等式的解集为_____.15.已知直线和,若,则a等于________.16.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)求的最小正周期;(2)求在闭区间上的最大值和最小值.18.如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:;(2)若,,,试画出二面角的平面角,并求它的余弦值.19.已知点是函数的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足:当时,都有.(1)求c的值;(2)求证:为等差数列,并求出.(3)若数列前n项和为,是否存在实数m,使得对于任意的都有,若存在,求出m的取值范围,若不存在,说明理由.20.在平面直角坐标系中,已知曲线的方程是(,).(1)当,时,求曲线围成的区域的面积;(2)若直线:与曲线交于轴上方的两点,,且,求点到直线距离的最小值.21.已知,函数.(1)当时,解不等式;(2)若对,不等式恒成立,求a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
在数列中,,,且数列是等比数列,其公比,利用等比数列的通项公式可得:.可得,利用二次函数的单调性即可得出.【题目详解】在数列中,,,且数列是等比数列,其公比,.,.由或8时,,或9时,,数列的最大项等于或.故选:C.【题目点拨】本题考查等比数列的通项公式、累乘法、二次函数的单调性,考查推理能力与计算能力,属于中档题.2、D【解题分析】
根据并集定义计算.【题目详解】由题意A∪B={x|-2<x<3}.故选D.【题目点拨】本题考查集合的并集运算,属于基础题.3、D【解题分析】
分别考虑与的极限,然后作比较.【题目详解】因为,又,所以数列、的极限均存在,且极限值相等,故选D.【题目点拨】本题考查数列的极限的是否存在的判断以及计算,难度一般.注意求解的极限时,若是分段数列求和的形式,一定要将多段数列均考虑到.4、A【解题分析】,则,当且仅当取等号.所以选项是正确的.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.5、C【解题分析】
举例三边长分别是的三角形是钝角三角形,否定A,B,通过计算求出最大角是最小角的二倍的三角形,从而可确定C、D中哪个正确哪个错误.【题目详解】三边长分别是的三角形,最大角为,则,是钝角,三角形是钝角三角形,A,B都错,如图中,,,是的平分线,则,∴,,∴,,又由是的平分线,得,∴,解得,∴“连续整边三角形”中最大角是最小角的2倍的三角形只有一个,边长分别为4,5,6,C正确,D错误.故选D.【题目点拨】本题考查余弦定理,考查命题的真假判断,数学上要说明一个命题是假命题,只要举一个反例即可,而要说明它是真命题,则要进行证明.6、B【解题分析】
根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角。【题目详解】解析:由题意,设切线为,∴.∴或.∴时转动最小.∴最小正角为.故选B.【题目点拨】本题考查直线与圆的位置关系,属于基础题。7、C【解题分析】
由,可得成等比数列,即有=4;讨论成等差数列或成等差数列,运用中项的性质,解方程可得,即可得到所求和.【题目详解】由,可得成等比数列,即有=4,①若成等差数列,可得,②由①②可得,1;若成等差数列,可得,③由①③可得,1.综上可得1.故选:C.【题目点拨】本题考查等差数列和等比数列的中项的性质,考查运算能力,属于中档题.8、A【解题分析】,,选A.9、A【解题分析】试题分析:由题意得,直线与直线垂直,则,解得或,所以“”是“直线与直线垂直”的充分不必要条件,故选A.考点:两条直线的位置关系及充分不必要条件的判定.10、A【解题分析】
不妨设,由得出点的坐标,根据题意得出曲线表示一个以为圆心,为半径的圆,区域表示以为圆心,内径为,外径为的圆环,再由是两段分离的曲线,结合圆与圆的位置关系得出的取值.【题目详解】不妨设则,所以,则曲线表示一个以为圆心,为半径的圆因为区域,所以区域表示以为圆心,内径为,外径为的圆环由于是两段分离的曲线,则该两段曲线分别为上图中的要使得是分离的曲线,则所在的圆与圆相交于不同的两点所以,即故选:A【题目点拨】本题主要考查了集合的应用以及由圆与圆的位置关系确定参数的范围,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据,可得平面,进而可得,再由,证明平面,即可得出,是的直角顶点.【题目详解】在三棱锥中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角顶点为.故答案为:.【题目点拨】本题考查了直线与直线以及直线与平面垂直的应用问题,属于基础题.12、【解题分析】
利用三角函数的定义可计算出,然后利用诱导公式可计算出结果.【题目详解】由三角函数的定义可得,由诱导公式可得.故答案为:.【题目点拨】本题考查利用三角函数的定义和诱导公式求值,考查计算能力,属于基础题.13、-3【解题分析】
作出可行域,目标函数过点时,取得最小值.【题目详解】作出可行域如图表示:目标函数,化为,当过点时,取得最大值,则取得最小值,由,解得,即,的最小值为.故答案为:【题目点拨】本题考查二元一次不等式组表示平面区域,以及线性目标函数的最值,属于基础题.14、【解题分析】
根据定义运算,把化简得,求出其解集即可.【题目详解】因为,所以,即,得,解得:故答案为:.【题目点拨】本题考查新定义,以及解一元二次不等式,考查运算的能力,属于基础题.15、【解题分析】
根据两直线互相垂直的性质可得,从而可求出的值.【题目详解】直线和垂直,.解得.故答案为:【题目点拨】本题考查了直线的一般式,根据两直线的位置关系求参数的值,熟记两直线垂直系数满足:是关键,属于基础题.16、分层抽样.【解题分析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,最小值为【解题分析】
(1)由三角函数恒等变换的应用可得,利用正弦函数的周期性可求最小正周期.
(2)通过,求得,再利用正弦函数的性质可求最值.【题目详解】解答:解:(1)由已知,有
,
所以的最小正周期;
(2),当,即时,取最大值,且最大值为;当,即时,取最小值,且最小值为.【题目点拨】本题主要考查了三角函数恒等变换的应用,正弦函数性质的应用,考查了转化思想,属于基础题.18、(1)见证明;(2)二面角图见解析;【解题分析】
(1)由菱形的性质得出,由平面,得出,再利用直线与平面垂直的判定定理证明平面,于是得出;(2)过点在平面内作,垂足为点,连接,可证出平面,于是找出二面角的平面角为,并计算出的三边边长,利用锐角三角函数计算出,即为所求答案.【题目详解】(1)连接,因为侧面为菱形,所以,且与相交于点.因为平面,平面,所以.又,所以平面因为平面,所以.(2)作,垂足为,连结,因为,,,所以平面,又平面,所以.所以是二面角的平面角.因为,所以为等边三角形,又,所以,所以.因为,所以.所以.在中,.【题目点拨】本题考查直线与直线垂直的证明,二面角的求解,在这些问题的处理中,主要找出一些垂直关系,二面角的求解一般有以下几种方法:①定义法;②三垂线法;③垂面法;④射影面积法;⑤空间向量法.在求解时,可以灵活利用这些方法去处理.19、(1)1;(2)证明见解析,;(3)存在,.【解题分析】
(1)根据题意可得,再根据等比数列的性质即可求出c(2)根据题意可得,然后求出和(3)利用裂项求和法求出前n项和为,然后就可得出m的范围【题目详解】(1)因为所以,即即前n项和为,所以,因为是等比数列所以有,即解得(2)且数列构成一个首项为1,公差为1的等差数列所以,即
所以(3)因为对于任意的都有所以【题目点拨】常见的数列求和方法有公式法即等差等比数列的求和公式、分组求和法、裂项相消法、错位相减法.20、(1)4;(2).【解题分析】
(1)当,时,曲线的方程是,对绝对值内的数进行讨论,得到四条直线围成一个菱形,并求出面积为4;(2)对进行讨论,化简曲线方程,并与直线方程联立,求出点的坐标,由得到的关系,再利用点到直线的距离公式求出,从而求得.【题目详解】(1)当,时,曲线的方程是,当时,,当时,,当时,方程等价于,当时,方程等价于,当时,方程等价于,当时,方程等价于,曲线围成的区域为菱形,其面积为;(2)当,时,有,联立直线可得,当,时,有,联立直线可得,由可得,即有,化为,点到直线距离,由题意可得,,,即,可得,,可得当,即时,点到直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度供应链管理合同:某制造企业与供应商就供应链管理达成的合作协议
- 瓷砖产品定制生产合同2024
- 2024版无人机技术研发与购销合同
- 电商平台安全检测与合规认证服务合同3篇
- 二零二四年度光伏发电项目投资合同标的及投资金额具体说明2篇
- 二零二四年度畜牧养殖业养殖饲料采购与供应合同
- 二零二四年健身教练个人劳动合同
- 二零二四年度设备采购合同标的为高端计算机设备
- 二零二四年度亚洲区域网络安全保障合作合同
- 二零二四年企业咨询服务框架协议
- 欧陆590系列数字直流式调速器中文说明书
- 分布函数(课堂PPT)
- 古城南京的城市演变与现代规划
- 测绘地理信息业务档案保管期限表(20150305)..
- 国家开放大学电大《物流信息系统管理》期末题库及答案
- 数字式双闭环直流调速系统设计(共26页)
- pdsoft简易教程
- 精忠报国歌谱
- 固体火箭发动机制造工艺
- 质控图与质控规则
- 飞控pixhawk学习指南walkant
评论
0/150
提交评论