版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省西畴县第二中学数学高一第二学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线的倾斜角的取值范围是()A. B. C. D.2.已知平面向量,,若与同向,则实数的值是()A. B. C. D.3.已知函数,在中,内角的对边分别是,内角满足,若,则的面积的最大值为()A. B. C. D.4.已知,,则点在直线上的概率为()A. B. C. D.5.已知,,那么等于()A. B. C. D.6.平面与平面平行的充分条件可以是()A.内有无穷多条直线都与平行B.直线,,且直线a不在内,也不在内C.直线,直线,且,D.内的任何一条直线都与平行7.为奇函数,当时,则时,A. B.C. D.8.函数的定义域是(
)A. B. C. D.9.正方体中,直线与所成角的余弦值为()A. B. C. D.10.已知圆x2+y2+2x-6y+5a=0关于直线y=x+b成轴对称图形,则A.(0,8) B.(-∞,8) C.(-∞,16)二、填空题:本大题共6小题,每小题5分,共30分。11.在三棱锥中,,,,作交于,则与平面所成角的正弦值是________.12.如图,将全体正整数排成一个三角形数阵,按照这样的排列规律,第行从右至左的第3个数为___________.13.已知两点,则线段的垂直平分线的方程为_________.14.若角的终边过点,则______.15.已知函数fx=cosx+2cosx,16.某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:)之间的关系如下:x012y5221通过上面的五组数据得到了x与y之间的线性回归方程:;但现在丢失了一个数据,该数据应为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的单调递增区间;(2)当时,求函数的最大值和最小值.18.如图,在四边形中,.(1)若为等边三角形,且是的中点,求.(2)若,,求.19.在平面直角坐标系中,已知.(1)求的值;(2)若,求的值.20.(2012年苏州17)如图,在中,已知为线段上的一点,且.(1)若,求的值;(2)若,且,求的最大值.21.已知幂函数的图像过点.(1)求函数的解析式;(2)设函数在是单调函数,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
由直线的方程可确定直线的斜率,可得其范围,进而可求倾斜角的取值范围.【题目详解】解:直线的斜率为,,根据正切函数的性质可得倾斜角的取值范围是故选:.【题目点拨】本题考查直线的斜率与倾斜角的关系,属于基础题.2、D【解题分析】
通过同向向量的性质即可得到答案.【题目详解】与同向,,解得或(舍去),故选D.【题目点拨】本题主要考查平行向量的坐标运算,但注意同向,难度较小.3、B【解题分析】
通过将利用合一公式变为,代入A求得A角,从而利用余弦定理得到b,c,的关系,从而利用均值不等式即可得到面积最大值.【题目详解】,为三角形内角,则,,当且仅当时取等号【题目点拨】本题主要考查三角函数恒等变换,余弦定理,面积公式及均值不等式,综合性较强,意在考查学生的转化能力,对学生的基础知识掌握要求较高.4、B【解题分析】
先求出点)的个数,然后求出点在直线上的个数,最后根据古典概型求出概率.【题目详解】点的个数为,其中点三点在直线上,所以点在直线上的概率为,故本题选B.【题目点拨】本题考查了古典概型概率的计算公式,考查了数学运算能力.5、B【解题分析】
首先求出题中,,之间的关系,然后利用正切的和角公式求解即可.【题目详解】由题知,,所以.故选:B.【题目点拨】本题考查了正切的和角公式,属于基础题.6、D【解题分析】
利用平面与平面平行的判定定理一一进行判断,可得正确答案.【题目详解】解:A选项,内有无穷多条直线都与平行,并不能保证平面内有两条相交直线与平面平行,这无穷多条直线可以是一组平行线,故A错误;B选项,直线,,且直线a不在内,也不在内,直线a可以是平行平面与平面的相交直线,故不能保证平面与平面平行,故B错误;C选项,直线,直线,且,,当直线,同样不能保证平面与平面平行,故C错误;D选项,内的任何一条直线都与平行,则内至少有两条相交直线与平面平行,故平面与平面平行;故选:D.【题目点拨】本题主要考查平面与平面平行的判断,解题时要认真审题,熟练掌握面与平面平行的判定定理,注意空间思维能力的培养.7、C【解题分析】
利用奇函数的定义,结合反三角函数,即可得出结论.【题目详解】又,时,,故选:C.【题目点拨】本题考查奇函数的定义、反三角函数,考查学生的计算能力,属于中档题.8、B【解题分析】
根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【题目详解】∵函数f(x)=+lg(3x+1),∴;解得﹣<x<1,∴函数f(x)的定义域是(﹣,1).故选B.【题目点拨】本题考查了求函数定义域的应用问题,解题的关键是列出使函数解析式有意义的不等式组,是基础题目.9、C【解题分析】
作出相关图形,通过平行将异面直线所成角转化为共面直线所成角.【题目详解】作出相关图形,由于,所以直线与所成角即为直线与所成角,由于为等边三角形,于是所成角余弦值为,故答案选C.【题目点拨】本题主要考查异面直线所成角的余弦值,难度不大.10、D【解题分析】
根据圆关于直线成轴对称图形得b=4,根据二元二次方程表示圆得a<2,再根据指数函数的单调性得4a【题目详解】解:∵圆x2+y∴圆心(-1,3)在直线∴3=-1+b,解得b=4又圆的半径r=4+36-20a2>0b故选:D.【题目点拨】本题考查了直线与圆的位置关系,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
取中点,中点,易得面,再求出到平面的距离,进而求解再得出到平面的距离.从而算得与平面所成角的正弦值即可.【题目详解】如图,取中点,中点,连接.因为,,所以.因为,,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距离.到面的距离.又因为,所以,所以,所以,故到面的距离.故与平面所成角的正弦值是故答案为:【题目点拨】本题主要考查了空间中线面垂直的性质与运用,同时也考查了余弦定理在三角形中求线段与角度正余弦值的方法,需要根据题意找到点到面的距离求解,再求出线面的夹角.属于难题.12、【解题分析】
由题可以先算出第行的最后一个数,再从右至左算出第3个数即可.【题目详解】由图得,第行有个数,故前行一共有个数,即第行最后一个数为,故第行从右至左的第3个数为.【题目点拨】本题主要考查等差数列求和问题,注意从右至左的第3个数为最后一个数减2.13、【解题分析】
求出直线的斜率和线段的中点,利用两直线垂直时斜率之积为可得出线段的垂直平分线的斜率,然后利用点斜式可写出中垂线的方程.【题目详解】线段的中点坐标为,直线的斜率为,所以,线段的垂直平分线的斜率为,其方程为,即.故答案为.【题目点拨】本题考查线段垂直平分线方程的求解,有如下两种方法求解:(1)求出中垂线的斜率和线段的中点,利用点斜式得出中垂线所在直线方程;(2)设动点坐标为,利用动点到线段两端点的距离相等列式求出动点的轨迹方程,即可作为中垂线所在直线的方程.14、-2【解题分析】
由正切函数定义计算.【题目详解】根据正切函数定义:.故答案为-2.【题目点拨】本题考查三角函数的定义,掌握三角函数定义是解题基础.15、(0,1)【解题分析】
画出函数f(x)在x∈0,2【题目详解】解:画出函数y=cosx+2|cosx|=3cos以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【题目点拨】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.16、4【解题分析】
根据回归直线经过数据的中心点可求.【题目详解】设丢失的数据为,则,,把代入回归方程可得,故答案为:4.【题目点拨】本题主要考查回归直线的特征,明确回归直线一定经过样本数据的中心点是求解本题的关键,侧重考查数学运算的核心素养.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)函数的最大值为,最小值为.【解题分析】
用二倍角正弦公式、降幂公式、辅助角公式对函数的解析式进行化简,然后利用正弦型函数的单调性求解即可.【题目详解】.(1)当时,函数递增,解得,所以函数的单调递增区间为;(2)因为,所以,因此所以函数的最大值为,最小值为.【题目点拨】本题考查了正弦型函数的单调性和最值,考查了辅助角公式、二倍角的正弦公式、降幂公式,考查了数学运算能力.18、(1)(2)【解题分析】
(1)先由题意,结合平面向量基本定理,用表示出,再由向量的数量积运算,即可得出结果;(2)先由向量数量积的运算,求出,再由,结合题中条件,即可得出结果.【题目详解】解:(1)为等边三角形,且,又是中点,又(2)由题意:,,,又【题目点拨】本题主要考查向量数量积的运算,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.19、(1);(2).【解题分析】
(1)由,得到,再结合向量的模的运算公式,即可求解.(2)因为,得到,求得,结合正切的倍角公式,即可求解.【题目详解】(1)由题意知,所以,因此;(2)因为,所以,即,因此.【题目点拨】本题主要考查了向量的坐标运算,向量的模的求解,以及向量的垂直的条件的应用和正切的倍角公式的化简求值等,着重考查了推理与计算能力,属于基础题.20、(1);(2).【解题分析】试题分析:(1)利用平面向量基本定理可得.(2)利用题意可得,则的最大值为.试题解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年反腐倡廉警示教育工作总结
- 美术鉴赏与创新思维
- 2006年贵州高考语文真题及答案
- 体育用品行政后勤工作总结
- 体育用品行业行政后勤工作总结
- 2023-2024年员工三级安全培训考试题附答案【完整版】
- 2024企业主要负责人安全培训考试题及答案(名校卷)
- 教师期末教学工作总结4篇
- 快乐的国庆节作文400字5篇
- 市场震动月度报告
- 医院消防培训方案
- 【人教部编版语文六年级上册】选择题专项练习复习(100道题后附答案)
- 腹膜透析建立课件
- 用户侧储能商业模式及投资收益分析
- 广东省广州市越秀区2022-2023学年八年级上学期期末物理试卷
- 统编版语文四年级上册《期末作文专项复习》 课件
- 2024年黑龙江省机场集团招聘笔试参考题库含答案解析
- 食品从业人员安全学习培训记录
- 内科季度护理质量分析课件
- 2024年安全生产月活动安全知识竞赛题库含答案
- 销售回款专项激励政策方案(地产公司)
评论
0/150
提交评论