云南省砚山县第二中学2024届高一数学第二学期期末统考模拟试题含解析_第1页
云南省砚山县第二中学2024届高一数学第二学期期末统考模拟试题含解析_第2页
云南省砚山县第二中学2024届高一数学第二学期期末统考模拟试题含解析_第3页
云南省砚山县第二中学2024届高一数学第二学期期末统考模拟试题含解析_第4页
云南省砚山县第二中学2024届高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省砚山县第二中学2024届高一数学第二学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.七巧板是我国古代劳动人民发明的一种智力玩具,由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A. B. C. D.2.高一数学兴趣小组共有5人,编号为.若从中任选3人参加数学竞赛,则选出的参赛选手的编号相连的概率为()A. B. C. D.3.已知O,N,P在所在平面内,且,,且,则点O,N,P依次是的()A.重心外心垂心 B.重心外心内心C.外心重心垂心 D.外心重心内心4.若直线:与直线:平行,则的值为()A.-1 B.0 C.1 D.-1或15.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球” D.“至少有一个黑球”与“都是红球”6.某同学5天上学途中所花的时间(单位:分钟)分别为12,8,10,9,11,则这组数据的方差为()A.4 B.2 C.9 D.37.直线(,)过点(-1,-1),则的最小值为()A.9 B.1 C.4 D.108.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么互斥而不对立的两个事件是()A.至少有1名男生和至少有1名女生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.恰有1名男生和恰有2名男生9.已知等边三角形ABC的边长为1,,那么().A.3 B.-3 C. D.10.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线在轴上的截距是__________.12.已知为锐角,则_______.13.已知等比数列an中,a3=2,a14.已知向量,,且,则______.15.已知sin=,则cos=________.16.当时,不等式成立,则实数k的取值范围是______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,的面积是30,.(1)求;(2)若,求的值.18.已知数列是递增的等比数列,且(Ⅰ)求数列的通项公式;(Ⅱ)设为数列的前n项和,,求数列的前n项和.19.若关于的不等式对一切实数都成立,求实数的取值范围.20.已知函数.(1)求的最小正周期和上的单调增区间:(2)若对任意的和恒成立,求实数的取值范围.21.在锐角中,角的对边分别是,且.(1)求角的大小;(2)若,求面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

设正方形的边长为,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率.【题目详解】设正方形的边长为,则阴影部分由三个小等腰直角三角形构成,则正方形的对角线长为,则等腰直角三角形的边长为,对应每个小等腰三角形的面积,则阴影部分的面积之和为,正方形的面积为,若在此正方形中任取一点,则此点取自黑色部分的概率为,故选:B.【题目点拨】本题考查面积型几何概型概率公式计算事件的概率,解题的关键在于计算出所求事件对应区域的面积和总区域的面积,考查计算能力,属于中等题.2、A【解题分析】

先考虑从个人中选取个人参加数学竞赛的基本事件总数,再分析选出的参赛选手的编号相连的事件数,根据古典概型的概率计算得到结果.【题目详解】因为从个人中选取个人参加数学竞赛的基本事件有:,共种,又因为选出的参赛选手的编号相连的事件有:,共种,所以目标事件的概率为.故选:A.【题目点拨】本题考查古典概型的简单应用,难度较易.求解古典概型问题的常规思路:先计算出基本事件的总数,然后计算出目标事件的个数,目标事件的个数比上基本事件的总数即可计算出对应的概率.3、C【解题分析】

根据向量关系,,所在直线经过中点,由得,即可得解.【题目详解】由题:,所以O是外接圆的圆心,取中点,,,即所在直线经过中点,与中线共线,同理可得分别与边的中线共线,即N是三角形三条中线交点,即重心,,,,,即,同理可得,即P是三角形的垂心.故选:C【题目点拨】此题考查利用向量关系判别三角形的外心,重心和垂心,关键在于准确进行向量的运算,根据运算结果得结论.4、C【解题分析】

两直线平行表示两直线斜率相等,写出斜率即可算出答案.【题目详解】显然,,.所以,解得,又时两直线重合,所以.故选C【题目点拨】此题考查直线平行表示直线斜率相等,属于简单题.5、C【解题分析】分析:利用对立事件、互斥事件的定义求解.详解:从装有两个红球和三个黑球的口袋里任取两个球,在A中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A错误;在B中,“至少有一个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B错误;在C中,“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故C正确;在D中,“至少有一个黑球”与“都是红球”是对立事件,故D错误.故答案为:C点睛:(1)本题主要考查互斥事件和对立事件的定义,意在考查学生对这些基础知识的掌握水平.(2)互斥事件指的是在一次试验中,不可能同时发生的两个事件,对立事件指的是在一次试验中,不可能同时发生的两个事件,且在一次试验中,必有一个发生的两个事件.注意理解它们的区别和联系.6、B【解题分析】

先求平均值,再结合方差公式求解即可.【题目详解】解:由题意可得,由方差公式可得:,故选:B.【题目点拨】本题考查了样本数据的方差,属基础题.7、A【解题分析】

将点的坐标代入直线方程:,再利用乘1法求最值【题目详解】将点的坐标代入直线方程:,,当且仅当时取等号【题目点拨】已知和为定值,求倒数和的最小值,利用乘1法求最值。8、D【解题分析】试题分析:A中两事件不是互斥事件;B中不是互斥事件;C中两事件既是互斥事件又是对立事件;D中两事件是互斥但不对立事件考点:互斥事件与对立事件9、D【解题分析】

利用向量的数量积即可求解.【题目详解】解析:.故选:D【题目点拨】本题考查了向量的数量积,注意向量夹角的定义,属于基础题.10、D【解题分析】

设OA=1,则AB,分别求出三个区域的面积,由测度比是面积比得答案.【题目详解】设OA=1,则AB,,以AB中点为圆心的半圆的面积为,以O为圆心的大圆面积的四分之一为,以AB为弦的大圆的劣弧所对弓形的面积为π﹣1,黑色月牙部分的面积为π﹣(π﹣1)=1,图Ⅲ部分的面积为π﹣1.设整个图形的面积为S,则p1,p1,p3.∴p1=p1>p3,故选D.【题目点拨】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

把直线方程化为斜截式,可得它在轴上的截距.【题目详解】解:直线,即,故它在轴上的截距是4,故答案为:.【题目点拨】本题主要考查直线方程的几种形式,属于基础题.12、【解题分析】

利用同角三角函数的基本关系得,再根据角度关系,利用诱导公式即可得答案.【题目详解】∵且,∴;∵,∴.故答案为:.【题目点拨】本题考查同角三角函数的基本关系、诱导公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号问题.13、4【解题分析】

先计算a5【题目详解】aaa故答案为4【题目点拨】本题考查了等比数列的计算,意在考查学生的计算能力.14、【解题分析】

根据的坐标表示,即可得出,解出即可.【题目详解】,,.【题目点拨】本题主要考查平行向量的坐标关系应用.15、【解题分析】

由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案为.16、k∈(﹣∞,1]【解题分析】

此题先把常数k分离出来,再构造成再利用导数求函数的最小值,使其最小值大于等于k即可.【题目详解】由题意知:∵当0≤x≤1时(1)当x=0时,不等式恒成立k∈R(2)当0<x≤1时,不等式可化为要使不等式恒成立,则k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵当0<x≤1时,g'(x)<0∴g(x)为单调递减函数∴g(x)<g(0)=0∴f'(x)<0即函数f(x)为单调递减函数所以f(x)min=f(1)=1即k≤1综上所述,由(1)(2)得k≤1故答案为:k∈(﹣∞,1].【题目点拨】本题主要考查利用导数求函数的最值,属于中档题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)144;(2)5.【解题分析】

(1)由同角的三角函数关系,由,可以求出的值,再由面积公式可以求出的值,最后利用平面向量数量积的公式求出的值;(2)由(1)可知的值,再结合已知,可以求出的值,由余弦定理可以求出的值.【题目详解】(1),又因为的面积是30,所以,因此(2)由(1)可知,与联立,组成方程组:,解得或,不符合题意舍去,由余弦定理可知:.【题目点拨】本题考查了同角的三角函数关系、三角形面积公式、余弦定理、平面向量的数量积运算,本题求,可以不求出的值也可以,计算如下:18、(Ⅰ)(Ⅱ)【解题分析】试题分析:(1)设等比数列的公比为q,,根据已知由等比数列的性质可得,联立解方程再由数列为递增数列可得则通项公式可得(2)根据等比数列的求和公式,有所以,裂项求和即可试题解析:(1)设等比数列的公比为q,所以有联立两式可得或者又因为数列为递增数列,所以q>1,所以数列的通项公式为(2)根据等比数列的求和公式,有所以所以考点:等比数列的通项公式和性质,数列求和19、【解题分析】

对二次项系数分成等于0和不等于0两种情况进行讨论,对时,利用二次函数的图象进行分析求解.【题目详解】当时,不等式对一切实数都成立,所以成立;当时,由题意得解得:;综上所述:.【题目点拨】本题考查不等式恒成立问题,注意运用分类讨论思想进行求解,同时也要结合二次函数的图象进行问题分析与求解.20、(1)T=π,单调增区间为,(2)【解题分析】

(1)化简函数得到,再计算周期和单调区间.(2)分情况的不同奇偶性讨论,根据函数的最值得到答案.【题目详解】解:(1)函数故的最小正周期.由题意可知:,解得:,因为,所以的单调增区间为,(2)由(1)得∵∴,∴,若对任意的和恒成立,则的最小值大于零.当为偶数时,,所以,当为奇数时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论