版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市中央民大附中数学高一下期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列结论中错误的是()A.若,则 B.函数的最小值为2C.函数的最小值为2 D.若,则函数2.函数在区间(,)内的图象是()A. B. C. D.3.要得到函数的图像,只需要将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位4.某市新上了一批便民公共自行车,有绿色和橙黄色两种颜色,且绿色公共自行车和橙黄色公共自行车的数量比为2∶1,现在按照分层抽样的方法抽取36辆这样的公共自行车放在某校门口,则其中绿色公共自行车的辆数是()A.8 B.12 C.16 D.245.生活中有这样一个实际问题:如果一杯糖水不够甜,可以选择加糖的方式,使得糖水变得更甜.若,则下列数学模型中最能刻画“糖水变得更甜”的是()A. B.C. D.6.若各项为正数的等差数列的前n项和为,且,则()A.9 B.14 C.7 D.187.某兴趣小组合作制作了一个手工制品,并将其绘制成如图所示的三视图,其中侧视图中的圆的半径为3,则制作该手工制品表面积为()A. B. C. D.8.已知数列{an}满足且,则的值是()A.-5 B.- C.5 D.9.右图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.10.将函数的图像向右平衡个单位长度,再把图象上所有点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数的最大值为 B.函数的最小正周期为C.函数的图象关于直线对称 D.函数在区间上单调递增二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为__________.12.已知是奇函数,且,则_______.13.若数列满足,,则的最小值为__________________.14.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为_________.15.在平面直角坐标系中,从五个点:中任取三个,这三点能构成三角形的概率是_______.16.在三棱锥P-ABC中,平面PAB⊥平面ABC,ΔABC是边长为23的等边三角形,其中PA=PB=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f1当a>0时,求函数y=f2若存在m>0使关于x的方程fx=m+118.在锐角中,角,,的对边分别为,,,若.(1)求角;(2)若,则周长的取值范围.19.某工厂要制造A种电子装置45台,B种电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2m2,可做A、B的外壳分别为3个和5个,乙种薄钢板每张面积3m2,可做A、B的外壳分别为6个和6个,求两种薄钢板各用多少张,才能使总的面积最小.20.设等差数列的前项和为,已知,,;(1)求公差的取值范围;(2)判断与0的大小关系,并说明理由;(3)指出、、、中哪个最大,并说明理由;21.已知数列的前项和为,,.(1)证明:数列是等比数列,并求其通项公式;(2)令,若对恒成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据均值不等式成立的条件逐项分析即可.【题目详解】对于A,由知,,所以,故选项A本身正确;对于B,,但由于在时不可能成立,所以不等式中的“”实际上取不到,故选项B本身错误;对于C,因为,当且仅当,即时,等号成立,故选项C本身正确;对于D,由知,,所以lnx+=-2,故选项D本身正确.故选B.【题目点拨】本题主要考查了均值不等式及不等式取等号的条件,属于中档题.2、D【解题分析】解:函数y=tanx+sinx-|tanx-sinx|=分段画出函数图象如D图示,故选D.3、D【解题分析】
根据的图像变换规律求解即可【题目详解】设平移量为,则由,满足:,故由向左平移个长度单位可得到故选:D【题目点拨】本题考查函数的图像变换规律,属于基础题4、D【解题分析】设放在该校门口的绿色公共自行车的辆数是x,则,解得x=1.故选D5、B【解题分析】
由题意可得糖水甜可用浓度体现,设糖的量为,糖水的量设为,添加糖的量为,对照选项,即可得到结论.【题目详解】由题意,若,设糖的量为,糖水的量设为,添加糖的量为,选项A,C不能说明糖水变得更甜,糖水甜可用浓度体现,而,能体现糖水变甜;选项D等价于,不成立,故选:B.【题目点拨】本题主要考查了不等式在实际生活中的运用,考查不等式的等价变形,着重考查了推理与运算能力,属于基础题.6、B【解题分析】
根据等差中项定义及条件式,先求得.再由等差数列的求和公式,即可求得的值.【题目详解】数列为各项是正数的等差数列则由等差中项可知所以原式可化为,所以由等差数列求和公式可得故选:B【题目点拨】本题考查了等差中项的性质,等差数列前n项和的性质及应用,属于基础题.7、D【解题分析】
由三视图可知,得到该几何体是由两个圆锥组成的组合体,根据几何体的表面积公式,即可求解.【题目详解】由三视图可知,该几何体是由两个圆锥组成的组合体,其中圆锥的底面半径为3,高为4,所以几何体的表面为.选D.【题目点拨】本题考查了几何体的三视图及表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.8、A【解题分析】试题分析:即数列是公比为3的等比数列.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.9、D【解题分析】
由三视图可知,该几何体为棱长为2的正方体截去一个三棱锥,由正方体的体积减去三棱锥的体积求解.【题目详解】根据三视图,可知原几何体如下图所示,该几何体为棱长为的正方体截去一个三棱锥,则该几何体的体积为.故选:D.【题目点拨】本题考查了几何体三视图的应用问题以及几何体体积的求法,关键是根据三视图还原原来的空间几何体,是中档题.10、C【解题分析】
根据函数y=Asin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的图象性质,得出结论.【题目详解】将函数的图象向右平移个单位长度,可得y=2sin(2x)的图象,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)=2sin(x)的图象,故g(x)的最大值为2,故A错误;显然,g(x)的最小正周期为2π,故B错误;当时,g(x)=,是最小值,故函数g(x)的图象关于直线对称,故C正确;在区间上,x∈[,],函数g(x)=2sin(x)单调递减,故D错误,故选:C.【题目点拨】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象性质应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
本题首先可通过三角恒等变换将函数化简为,然后根据的取值范围即可得出函数的值域.【题目详解】因为,所以.【题目点拨】本题考查通过三角恒等变换以及三角函数性质求值域,考查二倍角公式以及两角和的正弦公式,考查化归与转化思想,是中档题.12、【解题分析】
根据奇偶性定义可知,利用可求得,从而得到;利用可求得结果.【题目详解】为奇函数又即,解得:本题正确结果:【题目点拨】本题考查根据函数的奇偶性求解函数值的问题,属于基础题.13、【解题分析】
由题又,故考虑用累加法求通项公式,再分析的最小值.【题目详解】,故,当且仅当时成立.又为正整数,且,故考查当时.当时,当时,因为,故当时,取最小值为.故答案为:.【题目点拨】本题主要考查累加法,求最小值时先用基本不等式,发现不满足“三相等”,故考虑与相等时的取值最近的两个正整数.14、【解题分析】记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站的战法有=4种站法∴=15、【解题分析】
分别算出两点间的距离,共有种,构成三角形的条件为任意两边之和大于第三边,所以在这10种中找出满足条件的即可.【题目详解】由两点之间的距离公式,得:,,,任取三点有:,共10种,能构成三角形的有:,共6种,所求概率为:.【题目点拨】构成三角形必须满足任意两边之和大于第三边,则n个点共有个线段,找出满足条件的即可,属于中等难度题目.16、65π【解题分析】
本题首先可以通过题意画出图像,然后通过三棱锥的图像性质以及三棱锥的外接球的相关性质来确定圆心的位置,最后根据各边所满足的几何关系列出算式,即可得出结果。【题目详解】如图所示,作AB中点D,连接PD、CD,在CD上作三角形ABC的中心E,过点E作平面ABC的垂线,在垂线上取一点O,使得PO=OC。因为三棱锥底面是一个边长为23的等边三角形,E所以三棱锥的外接球的球心在过点E的平面ABC的垂线上,因为PO=OC,P、C两点在三棱锥的外接球的球面上,所以O点即为球心,因为平面PAB⊥平面ABC,PA=PB,D为AB中点,所以PD⊥平面ABCCD=CA2-ADPD=P设球的半径为r,则有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面积为S=4πr【题目点拨】本题考查三棱锥的相关性质,主要考查三棱锥的外接球的相关性质,考查如何通过三棱锥的几何特征来确定三棱锥的外接球与半径,考查推理能力,考查化归与转化思想,是难题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)a<-3-2【解题分析】
(1)将问题转化为解不等式ax2-a+1x+1≥0,即ax-1x-1≥0(2)t=m+1m≥2,将问题转化为:关于x的方程ax2【题目详解】(1)由题意,fx=ax解方程ax-1x-1=0,得x1①当1a>1时,即当0<a<1时,解不等式ax-1x-1≥0,得此时,函数y=fx的定义域为②当1a=1时,即当a=1时,解不等式x-12此时,函数y=fx的定义域为③当1a<1时,即当a>1时,解不等式ax-1x-1≥0,解得此时,函数y=fx的定义域为(2)令t=m+1则关于x的方程fx=t有四个不同的实根可化为即ax2-解得a<-3-2【题目点拨】本题考查含参不等式的求解,考查函数的零点个数问题,在求解含参不等式时,找出分类讨论的基本依据,在求解二次函数的零点问题时,应结合图形找出等价条件,通过列不等式组来求解,考查分类讨论数学思想以及转化与化归数学思想,属于中等题。18、(1)(2)【解题分析】
(1)利用切化成弦和余弦定理对等式进行化简,得角的正弦值;(2)利用成正弦定理把边化成角,从而实现的周长用角B的三角函数进行表示,即周长,再根据锐角三角形中角,求得函数值域.【题目详解】(1)由,得到,又,所以.(2),,设周长为,由正弦定理知,由合分比定理知,即,,即.又因为为锐角三角形,所以.,周长.【题目点拨】对运动变化问题,首先要明确变化的量是什么?或者选定什么量为变量?然后,利用函数与方程思想,把所求的目标表示成关于变量的函数,再研究函数性质进行问题求解.19、甲、乙两种薄钢板各5张,能保证制造A、B的两种外壳的用量,同时又能使用料总面积最小.【解题分析】
本题可先将甲种薄钢板设为x张,乙种薄钢板设为y张,然后根据题意,得出两个不等式关系,也就是3x+6y≥45、5x+6y≥55以及薄钢板的总面积是z=2x+3y,然后通过线性规划画出图像并求出总面积z=2x+3y的最小值,最后得出结果.【题目详解】设甲种薄钢板x张,乙种薄钢板y张,则可做A种产品外壳3x+6y个,B种产品外壳5x+6y个,由题意可得3x+6y≥455x+6y≥55x≥0,y≥0,薄钢板的总面积是可行域的阴影部分如图所示,其中l1:3x+6y=45、l2:因目标函数z=2x+3y在可行域上的最小值在区域边界的A5此时z的最小值为2×5+3×5=25即甲、乙两种薄钢板各5张,能保证制造A、【题目点拨】(1)利用线性规划求目标函数最值的步骤①作图:画出约束条件所确定的平面区域和目标函数所表示的平面直角坐标系中的任意一条直线l;②平移:将l平行移动,以确定最优解所对应的点的位置.有时需要进行目标函数l和可行域边界的斜率的大小比较;③求值:解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.(2)用线性规划解题时要注意z的几何意义.20、(1);(2),理由见解析;(3),理由见解析;【解题分析】
(1)由,,,得到不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版围栏生产废水处理与排放标准合同3篇
- 二零二五版个人专利权抵押融资合同模板2篇
- 二零二五版股权质押投资顾问服务合同样本3篇
- 二零二五年艺术展厅租赁及艺术品交易服务合同3篇
- 二零二五版国际贸易实务实验报告与国际贸易实务指导合同3篇
- 二零二五版电商企业内部保密协议及商业秘密保密制度合同2篇
- 二零二五年度高校教师解聘合同3篇
- 二零二五版屋顶光伏发电与防水一体化系统合同3篇
- 二零二五版上市公司短期融资券发行合同3篇
- 二零二五版企业财务风险管理体系构建服务合同2篇
- DB-T29-74-2018天津市城市道路工程施工及验收标准
- 小学一年级20以内加减法混合运算3000题(已排版)
- 智慧工厂数字孪生解决方案
- 病机-基本病机 邪正盛衰讲解
- 品管圈知识 课件
- 非诚不找小品台词
- 2024年3月江苏省考公务员面试题(B类)及参考答案
- 患者信息保密法律法规解读
- 老年人护理风险防控PPT
- 充电桩采购安装投标方案(技术方案)
- 医院科室考勤表
评论
0/150
提交评论