版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省山西大学附中数学高一下期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是棱长为的正方体的平面展开图,则在这个正方体中直线所成角的大小为()A. B. C. D.2.已知{an}是等差数列,且a2+a5+a8+a11=48,则a6+a7=()A.12 B.16 C.20 D.243.已知,则比多了几项()A.1 B. C. D.4.在数列中,,则数列的前n项和的最大值是()A.136 B.140 C.144 D.1485.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数.例如:,,已知函数,则函数的值域为()A. B. C. D.6.已知m,n是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,则C.若,,,则 D.若,,则7.若平面向量,满足,,且,则等于()A. B. C.2 D.88.函数的对称中心是()A. B. C. D.9.函数,的值域是()A. B. C. D.10.若向量,且,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.当时,的最大值为__________.12.若点与关于直线对称,则的倾斜角为_______13.若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于________.14.我国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天走的路程为__________里.15.如图是一正方体的表面展开图.、、都是所在棱的中点.则在原正方体中:①与异面;②平面;③平面平面;④与平面形成的线面角的正弦值是;⑤二面角的余弦值为.其中真命题的序号是______.16.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在已知数列中,,.(1)若数列中,,求证:数列是等比数列;(2)设数列、的前项和分别为、,是否存在实数,使得数列为等差数列?若存在,试求出的值;若不存在,请说明理由.18.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.19.在△ABC中,AC=4,,.(Ⅰ)求的大小;(Ⅱ)若D为BC边上一点,,求DC的长度.20.已知f(α)=,其中α≠kπ(k∈Z).(1)化简f(α);(2)若f(+β)=-,β是第四象限的角,求sin(2β+)的值.21.在中,内角A,B,C的对边分别为a,b,c,已知.求A;已知,的面积为的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
根据异面直线所成的角的定义,先作其中一条的平行线,作出异面直线所成的角,然后求解.【题目详解】如图所示:在正方体中,,所以直线所成角,由正方体的性质,知,所以.故选:C【题目点拨】本题主要考查了异面直线所成的角,还考查了推理论证的能力,属于基础题.2、D【解题分析】由等差数列的性质可得,则,故选D.3、D【解题分析】
由写出,比较两个等式得多了几项.【题目详解】由题意,则,那么:,又比多了项.故选:D.【题目点拨】本题考查对函数的理解和带值计算问题,属于基础题.4、C【解题分析】
可得数列为等差数列且前8项为正数,第9项为0,从第10项开始为负数,可得前8或9项和最大,由求和公式计算可得.【题目详解】解:∵在数列中,,
,即数列为公差为−4的等差数列,
,
令可得,
∴递减的等差数列中前8项为正数,第9项为0,从第10项开始为负数,
∴数列的前8或9项和最大,
由求和公式可得
故选:C.【题目点拨】本题考查等差数列的求和公式和等差数列的判定,属基础题.5、D【解题分析】
分离常数法化简f(x),根据新定义即可求得函数y=[f(x)]的值域.【题目详解】,又>0,∴,∴∴当x∈(1,1)时,y=[f(x)]=1;当x∈[1,)时,y=[f(x)]=1.∴函数y=[f(x)]的值域是{1,1}.故选D.【题目点拨】本题考查了新定义的理解和应用,考查了分离常数法求一次分式函数的值域,是中档题.6、C【解题分析】
利用线面垂直、线面平行、面面垂直的性质定理分别对选项分析选择.【题目详解】对于A,若,,则或者;故A错误;对于B,若,则可能在内或者平行于;故B错误;对于C,若,,,过分作平面于,作平面,则根据线面平行的性质定理得,,∴,根据线面平行的判定定理,可得,又,,根据线面平行的性质定理可得,又,∴;故C正确;对于D.若,,则与可能垂直,如墙角;故D错误;故选:C.【题目点拨】本题考查了面面垂直、线面平行、线面垂直的性质定理及应用,涉及空间线线平行的传递性,考查了空间想象能力,熟练运用定理是关键.7、B【解题分析】
由,可得,再结合,展开可求出答案.【题目详解】由,可知,展开可得,所以,又,,所以.故选:B.【题目点拨】本题考查向量数量积的应用,考查学生的计算求解能力,注意向量的平方等于模的平方,属于基础题.8、C【解题分析】,设是奇函数,其图象关于原点对称,而函数的图象可由的图象向右平移一个单位,向下平移两个单位得到,所以函数的图象关于点对称,故选C.9、A【解题分析】
由的范围求出的范围,结合余弦函数的性质即可求出函数的值域.【题目详解】∵,∴,∴当,即时,函数取最大值1,当即时,函数取最小值,即函数的值域为,故选A.【题目点拨】本题主要考查三角函数在给定区间内求函数的值域问题,通过自变量的范围求出整体的范围是解题的关键,属基础题.10、B【解题分析】
根据坐标形式下向量的平行对应的等量关系,即可计算出的值,再根据坐标形式下向量的加法即可求解出的坐标表示.【题目详解】因为且,所以,所以,所以.故选:B.【题目点拨】本题考查根据坐标形式下向量的平行求解参数以及向量加法的坐标运算,难度较易.已知,若则有.二、填空题:本大题共6小题,每小题5分,共30分。11、-3.【解题分析】
将函数的表达式改写为:利用均值不等式得到答案.【题目详解】当时,故答案为-3【题目点拨】本题考查了均值不等式,利用一正二定三相等将函数变形是解题的关键.12、【解题分析】
根据两点关于直线对称,可知与垂直,利用斜率乘积为可求得,根据直线倾斜角与斜率的关系可求得倾斜角.【题目详解】由题意知:,即:又本题正确结果:【题目点拨】本题考查直线倾斜角的求解,关键是能够根据两点关于直线对称的性质求得所求直线的斜率,再根据斜率与倾斜角的关系求得结果.13、1【解题分析】
由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.【题目详解】由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=1.故答案为1.点评:本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题.【思路点睛】解本题首先要能根据韦达定理判断出a,b均为正值,当他们与-2成等差数列时,共有6种可能,当-2为等差中项时,因为,所以不可取,则-2只能作为首项或者末项,这两种数列的公差互为相反数;又a,b与-2可排序成等比数列,由等比中项公式可知-2必为等比中项,两数列搞清楚以后,便可列方程组求解p,q.14、192【解题分析】设每天走的路程里数为由题意知是公比为的等比数列∵∴∴故答案为15、①②④【解题分析】
将正方体的表面展开图还原成正方体,利用正方体中线线、线面以及面面关系,以及直线与平面所成角的定义和二面角的定义进行判断.【题目详解】根据条件将正方体进行还原如下图所示:对于命题①,由图形可知,直线与异面,命题①正确;对于命题②,、分别为所在棱的中点,易证四边形为平行四边形,所以,,平面,平面,平面,命题②正确;对于命题③,在正方体中,平面,由于四边形为平行四边形,,平面.、平面,,.则二面角所成的角为,显然不是直角,则平面与平面不垂直,命题③错误;对于命题④,设正方体的棱长为,易知平面,则与平面所成的角为,由勾股定理可得,,在中,,即直线与平面所成线面角的正弦值为,命题④正确;对于命题⑤,在正方体中,平面,且,平面.、平面,,,所以,二面角的平面角为,在中,由勾股定理得,,由余弦定理得,命题⑤错误.故答案为①②④.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面关系的判断以及线面角、二面角的计算,判断时要从空间中有关线线、线面、面面关系的平行或垂直的判定或性质定理出发进行推导,在计算空间角时,则应利用空间角的定义来求解,考查推理能力与运算求解能力,属于中等题.16、【解题分析】
观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【题目详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【题目点拨】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)存在,.【解题分析】
(1)利用等比数列的定义结合数列的递推公式证明出为非零常数,即可证明出数列为等比数列,并可求出数列的通项公式;(2)求出数列的通项公式,利用分组求和法与等比数列的求和公式分别求出数列、,设,列出关于、、的方程组,解出即可.【题目详解】(1)在数列中,,,则,,且,数列是以为首项,为公比的等比数列,;(2),整理得,,,,所以,,若数列为等差数列,可设,则,即,则,解得,因此,存在实数,使得数列为等差数列.【题目点拨】本题考查等差数列的证明、数列求和以及等差数列的存在性问题,熟悉等差数列的定义和通项公式的结构是解题的关键,考查推理能力与运算求解能力,属于中等题.18、(Ⅰ)(Ⅱ)【解题分析】
(I)利用向量数量积的运算,化简,得到,由此求得的大小.(II)先利用向量的数量积运算,求得的值,由此求得的值.【题目详解】解:(Ⅰ)因为,所以.所以.因为,所以.(Ⅱ)因为,由已知,,所以.所以.【题目点拨】本小题主要考查向量数量积运算,考查向量夹角的计算,考查向量模的求法,属于基础题.19、(Ⅰ);(Ⅱ)或【解题分析】
(Ⅰ)由正弦定理得到,在结合三角形内角的性质即可的大小;(Ⅱ)由(Ⅰ)可得的大小,在中,利用余弦定理即可求出边的长.【题目详解】(Ⅰ)在中,由正弦定理得,所以.因为,所以,所以.(Ⅱ)在中,.在中,由余弦定理,得,即,解得或.经检验,都符合题意.【题目点拨】本题主要考查正弦定理与余弦定理,属于基础题.20、(1)(2)【解题分析】
(1)直接利用三角函数的诱导公式,化简运算,即可求解;(2)由,得,进一步求得,得到sin2与cos2,再由sin(2+)展开两角和的正弦求解.【题目详解】(1)由题意,可得=;(2)由f(+)==-,得sin.又β是第四象限的角,∴cos=.∴sin2,cos2.∴sin(2+)=sin2cos+cos2sin=.【题目点拨】本题主要考查了三角函数的化简求值,及诱导公式及两角差的正弦公式的应用,其中解答中熟记三家函数的恒等变换的公式,准确运算是解答的关键,着重考查了推理与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车位定价协议合同范例
- 资产投资协议合同范例
- 美容院购销合同2025年
- 商铺转让合同范本2025年
- 企业级物联网解决方案实施合同
- 私人挂靠物业公司合同范本(2025年)
- 爱惜粮食课程设计
- 国际贸易采购原材料合同2025年
- 邮箱服务合同
- 学校教学楼课程设计
- 青年应有鸿鹄志当骑骏马踏平川课件高三上学期励志主题班会
- 河北省唐山市2021-2022学年高三上学期语文期末试卷
- oa系统合同范例
- 华电甘肃能源有限公司华电系统内外招聘真题
- 《文明礼仪概述培训》课件
- 新疆大学答辩模板课件模板
- 数值分析智慧树知到期末考试答案2024年
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 跨文化沟通心理学智慧树知到期末考试答案2024年
- 《中华民族共同体概论》考试复习题库(含答案)
- NB-T 47013.15-2021 承压设备无损检测 第15部分:相控阵超声检测
评论
0/150
提交评论