版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大长春附属学校2024届数学高一下期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线过且在轴与轴上的截距相等,则的方程为()A. B.C.和 D.2.数列中,,,则().A. B. C. D.3.若关于的方程有且只有两个不同的实数根,则实数的取值范围是()A. B. C. D.4.已知点P(,)为角的终边上一点,则()A. B.- C. D.05.函数的对称中心是()A. B. C. D.6.若圆上有且仅有两个点到直线的距离等于,则的取值范围是()A. B. C. D.7.若关于的不等式的解集为,则的取值范围是()A. B. C. D.8.在区间随机取一个实数,则的概率为()A. B. C. D.9.已知函数相邻两个零点之间的距离为,将的图象向右平移个单位长度,所得的函数图象关于轴对称,则的一个值可能是()A. B. C. D.10.给出下列命题:(1)存在实数使.(2)直线是函数图象的一条对称轴.(3)的值域是.(4)若都是第一象限角,且,则.其中正确命题的题号为()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)二、填空题:本大题共6小题,每小题5分,共30分。11.正项等比数列中,,,则公比__________.12.若,则____________.13.已知函数,的最大值为_____.14.公比为2的等比数列的各项都是正数,且,则的值为___________15.直线和将单位圆分成长度相等的四段弧,则________.16.设函数的最小值为,则的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列中,,.(1)求证:数列为等差数列,求数列的通项公式;(2)若数列的前项和为,求证:.18.选修4-5:不等式选讲已知函数,M为不等式的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b时,.19.单调递增的等差数列满足,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.20.已知,,,且.(1)若,求的值;(2)设,,若的最大值为,求实数的值.21.(1)已知圆经过和两点,若圆心在直线上,求圆的方程;(2)求过点、和的圆的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
对直线是否过原点分类讨论,若直线过原点满足题意,求出方程;若直线不过原点,在轴与轴上的截距相等,且不为0,设直线方程为将点代入,即可求解.【题目详解】若直线过原点方程为,在轴与轴上的截距均为0,满足题意;若直线过原点,依题意设方程为,代入方程无解.故选:B.【题目点拨】本题考查直线在上的截距关系,要注意过原点的直线在轴上的截距是轴上的截距的任意倍,属于基础题.2、B【解题分析】
通过取倒数的方式可知数列为等差数列,利用等差数列通项公式求得,进而得到结果.【题目详解】由得:,即数列是以为首项,为公差的等差数列本题正确选项:【题目点拨】本题考查利用递推关系式求解数列中的项的问题,关键是能够根据递推关系式的形式,确定采用倒数法得到等差数列.3、B【解题分析】
方程化为,可转化为半圆与直线有两个不同交点,作图后易得.【题目详解】由得由题意半圆与直线有两个不同交点,直线过定点,作出半圆与直线,如图,当直线过时,,,当直线与半圆相切(位置)时,由,解得.所以的取值范围是.故选:B.【题目点拨】本题考查方程根的个数问题,把问题转化为直线与半圆有两个交点后利用数形结合思想可以方便求解.4、A【解题分析】
根据余弦函数的定义,可直接得出结果.【题目详解】因为点P(,)为角的终边上一点,则.故选A【题目点拨】本题主要考查三角函数的定义,熟记概念即可,属于基础题型.5、C【解题分析】,设是奇函数,其图象关于原点对称,而函数的图象可由的图象向右平移一个单位,向下平移两个单位得到,所以函数的图象关于点对称,故选C.6、B【解题分析】
先求出圆心到直线的距离,然后结合图象,即可得到本题答案.【题目详解】由题意可得,圆心到直线的距离为,故由图可知,当时,圆上有且仅有一个点到直线的距离等于;当时,圆上有且仅有三个点到直线的距离等于;当则的取值范围为时,圆上有且仅有两个点到直线的距离等于.故选:B【题目点拨】本题主要考查直线与圆的综合问题,数学结合是解决本题的关键.7、C【解题分析】
根据对数的性质列不等式,根据一元二次不等式恒成立时,判别式和开口方向的要求列不等式组,解不等式组求得的取值范围.【题目详解】由得,即恒成立,由于时,在上不恒成立,故,解得.故选:C.【题目点拨】本小题主要考查对数函数的性质,考查一元二次不等式恒成立的条件,属于基础题.8、C【解题分析】
利用几何概型的定义区间长度之比可得答案,在区间的占比为,所以概率为。【题目详解】因为的长度为3,在区间的长度为9,所以概率为。故选:C【题目点拨】此题考查几何概型,概率即是在部分占总体的占比,属于简单题目。9、D【解题分析】
先求周期,从而求得,再由图象变换求得.【题目详解】函数相邻两个零点之间的距离为,则周期为,∴,,图象向右平移个单位得,此函数图象关于轴对称,即为偶函数,∴,,.时,.故选D.【题目点拨】本题考查函数的图象与性质.考查图象平衡变换.在由图象确定函数解析式时,可由最大值和最小值确定,由“五点法”确定周期,从而确定,再由特殊值确定.10、C【解题分析】
(1)化简求值域进行判断;(2)根据函数的对称性可判断;(3)根据余弦函数的图像性质可判断;(4)利用三角函数线可进行判断.【题目详解】解:(1),(1)错误;(2)是函数图象的一个对称中心,(2)错误;(3)根据余弦函数的性质可得的最大值为,,其值域是,(3)正确;(4)若都是第一象限角,且,利用三角函数线有,(4)正确.故选.【题目点拨】本题考查正弦函数与余弦函数、正切函数的性质,以及三角函数线定义,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据题意,由等比数列的性质可得,进而分析可得答案.【题目详解】根据题意,等比数列中,,则,又由数列是正项的等比数列,所以.【题目点拨】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,以及注意数列是正项等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解题分析】故答案为.13、【解题分析】
化简,再利用基本不等式以及辅助角公式求出的最大值,即可得到的最大值【题目详解】由题可得:由于,,所以,由基本不等式可得:由于,所以所以,即的最大值为故答案为【题目点拨】本题考查三角函数的最值问题,涉及二倍角公式、基本不等式、辅助角公式等知识点,属于中档题。14、2【解题分析】
根据等比数列的性质与基本量法求解即可.【题目详解】由题,因为,又等比数列的各项都是正数,故.故.故答案为:【题目点拨】本题主要考查了等比数列的等积性与各项之间的关系.属于基础题.15、0【解题分析】
将单位圆分成长度相等的四段弧,每段弧对应的圆周角为,计算得到答案.【题目详解】如图所示:将单位圆分成长度相等的四段弧,每段弧对应的圆周角为或故答案为0【题目点拨】本题考查了直线和圆相交问题,判断每段弧对应的圆周角为是解题的关键.16、.【解题分析】
确定函数的单调性,由单调性确定最小值.【题目详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【题目点拨】本题考查分段函数的单调性.由单调性确定最小值,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解题分析】
(1)结合,构造数列,证明得到该数列为等差数列,结合等差通项数列计算方法,即可.(2)运用裂项相消法,即可.【题目详解】(1)由,(即),可得,所以,所以数列是以为首项,以2为公差的等差数列,所以,即.(2),所以,因为,所以.【题目点拨】本道题考查了等差数列通项计算方法和裂项相消法,难度一般.18、(Ⅰ);(Ⅱ)详见解析.【解题分析】试题分析:(I)先去掉绝对值,再分,和三种情况解不等式,即可得;(II)采用平方作差法,再进行因式分解,进而可证当,时,.试题解析:(I)当时,由得解得;当时,;当时,由得解得.所以的解集.(Ⅱ)由(Ⅰ)知,当时,,从而,因此【考点】绝对值不等式,不等式的证明.【名师点睛】形如(或)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为,,(此处设)三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各个不等式解集的并集.(2)图象法:作出函数和的图象,结合图象求解.19、(1);(2).【解题分析】
(1)设等差数列的公差为,,运用等差数列的通项公式和等比数列中项性质,解方程可得公差,进而得到所求通项公式;(2)求得,再用裂项相消法即可得出结论.【题目详解】解:(1)设等差数列的公差为,,可得,,由,,成等比数列,,解得或舍去),则;(2),∴.【题目点拨】本题主要考查等差数列的通项公式和等比数列中项性质,考查数列的裂项相消法求和,考查运算能力,属于中档题.20、(1)0(2)【解题分析】
(1)通过可以算出,移项、两边平方即可算出结果.(2)通过向量的运算,解出,再通过最大值根的分布,求出的值.【题目详解】(1)通过可以算出,即故答案为0.(2),设,,,即的最大值为;①当时,(满足条件);②当时,(舍);③当时,(舍)故答案为【题目点拨】当式子中同时出现时,常常可以利用换元法,把用进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.21、(1);(2)【解题分析】
(1)由直线AB的斜率,中点坐标,写出线段AB中垂线的直线方程,与直线x-2y-3=0联立即可求出交点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度老旧小区电梯安全改造项目合作协议4篇
- 2025年度绿色能源项目承包转让协议书4篇
- 二零二五年度数字货币交易平台合伙人协议3篇
- 二零二五年度高端定制家具加工合同模板4篇
- 2025年度农业科技园房屋租赁及土地流转合同4篇
- 2025年电梯智能化改造设计与施工合同4篇
- 2025年度个人二手车买卖合同车辆状况鉴定服务合同
- 二零二五版门禁系统安全防护与应急响应合同4篇
- 2025年度木材加工废弃物处理技术引进合同范本4篇
- 2025年度个人住宅买卖合同书
- 医学脂质的构成功能及分析专题课件
- 高技能人才培养的策略创新与实践路径
- 广东省湛江市廉江市2023-2024学年八年级上学期期末考试数学试卷(含答案)
- 2024年湖北省知名中小学教联体联盟中考语文一模试卷
- 安徽省芜湖市2023-2024学年高一上学期期末考试 生物 含解析
- 燃气行业有限空间作业安全管理制度
- 气胸病人的护理幻灯片
- 《地下建筑结构》第二版(朱合华)中文(2)课件
- JB T 7946.1-2017铸造铝合金金相
- 包装过程质量控制
- 通用电子嘉宾礼薄
评论
0/150
提交评论