河北省沧州盐山中学2024届高一数学第二学期期末联考模拟试题含解析_第1页
河北省沧州盐山中学2024届高一数学第二学期期末联考模拟试题含解析_第2页
河北省沧州盐山中学2024届高一数学第二学期期末联考模拟试题含解析_第3页
河北省沧州盐山中学2024届高一数学第二学期期末联考模拟试题含解析_第4页
河北省沧州盐山中学2024届高一数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省沧州盐山中学2024届高一数学第二学期期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,已知四面体为正四面体,分别是中点.若用一个与直线垂直,且与四面体的每一个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为().A. B. C. D.2.已知数列且是首项为2,公差为1的等差数列,若数列是递增数列,且满足,则实数a的取值范围是()A. B.C. D.3.若,则()A. B. C. D.4.执行下面的程序框图,则输出的的值为()A.10 B.34 C.36 D.1545.设为等比数列的前n项和,若,,成等差数列,则()A.,,成等差数列 B.,,成等比数列C.,,成等差数列 D.,,成等比数列6.已知样本数据为3,1,3,2,3,2,则这个样本的中位数与众数分别为()A.2,3 B.3,3 C.2.5,3 D.2.5,27.函数的最大值为()A. B. C. D.8.若变量,且满足约束条件,则的最大值为()A.15 B.12 C.3 D.9.若、、为实数,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则10.在中,已知,则的面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.异面直线,所成角为,过空间一点的直线与直线,所成角均为,若这样的直线有且只有两条,则的取值范围为___________________.12.__________.13.已知为等差数列,,,,则______.14.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.15.设向量满足,,,.若,则的最大值是________.16.已知向量满足,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若在定义域内存在实数,使得成立,则称函数有“和一点”.(1)函数是否有“和一点”?请说明理由;(2)若函数有“和一点”,求实数的取值范围;(3)求证:有“和一点”.18.已知数列前n项和,点在函数的图象上.(1)求的通项公式;(2)设数列的前n项和为,不等式对任意的正整数恒成立,求实数a的取值范围.19.2013年11月,总书记到湖南湘西考察时首次作出了“实事求是、因地制宜、分类指导精准扶贫”的重要指示.2014年1月,中央详细规制了精准扶贫工作模式的顶层设计,推动了“精准扶贫”思想落地.2015年1月,精准扶贫首个调研地点选择了云南,标志着精准扶贫正式开始实行.某单位立即响应党中央号召,对某村6户贫困户中的甲户进行定点帮扶,每年跟踪调查统计一次,从2015年1月1日至2018年12月底统计数据如下(人均年纯收入):年份2015年2016年2017年2018年年份代码1234收入(百元)25283235(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计甲户在2019年能否脱贫;(注:国家规定2019年脱贫标准:人均年纯收入为3747元)(2)2019年初,根据扶贫办的统计知,该村剩余5户贫困户中还有2户没有脱贫,现从这5户中抽取2户,求至少有一户没有脱贫的概率.参考公式:,,其中为数据的平均数.20.底面半径为3,高为的圆锥有一个内接的正四棱柱(底面是正方形,侧棱与底面垂直的四棱柱).(1)设正四棱柱的底面边长为,试将棱柱的高表示成的函数;(2)当取何值时,此正四棱柱的表面积最大,并求出最大值.21.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

通过补体,在正方体内利用截面为平行四边形,有,进而利用基本不等式可得解.【题目详解】补成正方体,如图.∴截面为平行四边形,可得,又且可得当且仅当时取等号,选A.【题目点拨】本题主要考查了线面的位置关系,截面问题,考查了空间想象力及基本不等式的应用,属于难题.2、D【解题分析】

根据等差数列和等比数列的定义可确定是以为首项,为公比的等比数列,根据等比数列通项公式,进而求得;由数列的单调性可知;分别在和两种情况下讨论可得的取值范围.【题目详解】由题意得:,,是以为首项,为公比的等比数列为递增数列,即①当时,,,即只需即可满足②当时,,,即只需即可满足综上所述:实数的取值范围为故选:【题目点拨】本题考查根据数列的单调性求解参数范围的问题,涉及到等差和等比数列定义的应用、等比数列通项公式的求解、对数运算法则的应用等知识;解题关键是能够根据单调性得到关于变量和的关系式,进而通过分离变量的方式将问题转化为变量与关于的式子的最值的大小关系问题.3、C【解题分析】

由及即可得解.【题目详解】由,可得.故选C.【题目点拨】本题主要考查了同角三角函数的基本关系及二倍角公式,属于基础题.4、B【解题分析】试题分析:第一次循环:第二次循环:第三次循环:第四次循环:结束循环,输出,选B.考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5、A【解题分析】

先说明不符合题意,由时,成等差数列,算得,然后用表示出来,即可得到本题答案.【题目详解】设等比数列的公比为q,首项为,当时,有,不满足成等差数列;当时,因为成等差数列,所以,即,化简得,解得,所以,,,则成等差数列.故选:A【题目点拨】本题主要考查等差数列与等比数列的综合应用,计算出等比数列的公比是关键,考查计算能力,属于中等题.6、C【解题分析】

将样本数据从小到大排列即可求得中位数,再找出出现次数最多的数即为众数.【题目详解】将样本数据从小到大排列:1,2,2,3,3,3,中位数为,众数为3.故选:C.【题目点拨】本题考查了中位数和众数的概念,属于基础题.7、D【解题分析】

令,根据正弦型函数的性质可得,那么,可将问题转化为二次函数在定区间上的最值问题.【题目详解】由题意,令,可得,,∴,∴原函数的值域与函数的值域相同.∵函数图象的对称轴为,,取得最大值为.故选:D.【题目点拨】本题考查三角函数中的恒等变换、函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意换元法的使用,将问题转化为二次函数的值域问题.8、A【解题分析】

作出可行域,采用平移直线法判断何处取到最大值.【题目详解】画出可行域如图阴影部分,由得,目标函数图象可看作一条动直线,由图形可得当动直线过点时,.故选A.【题目点拨】本题考查线性规划中线性目标函数最值的计算,难度较易.求解线性目标函数的最值时,采用平移直线法是最常规的.9、B【解题分析】

利用等式的性质或特殊值法来判断各选项中不等式的正误.【题目详解】对于A选项,若,则,故A不成立;对于B选项,,在不等式同时乘以,得,另一方面在不等式两边同时乘以,得,,故B成立;对于选项C,在两边同时除以,可得,所以C不成立;对于选项D,令,,则有,,,所以D不成立.故选B.【题目点拨】本题考查不等式正误的判断,常用的判断方法有:不等式的基本性质、特殊值法以及比较法,在实际操作中,可结合不等式结构合理选择相应的方法进行判断,考查推理能力,属于基础题.10、B【解题分析】

根据三角形的面积公式求解即可.【题目详解】的面积.

故选:B【题目点拨】本题主要考查了三角形的面积公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,根据题意可以求出的取值范围.【题目详解】将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,异面直线,所成角为,可知,所以,所以在方向,要使有两条,则有:,在方向,要使不存在,则有,综上所述,.故答案为:【题目点拨】本题考查了异面直线的所成角的有关性质,考查了空间想象能力.12、【解题分析】

利用诱导公式以及正弦差角公式化简式子,之后利用特殊角的三角函数值直接计算即可.【题目详解】.故答案为【题目点拨】该题考查的是有关三角函数化简求值问题,涉及到的知识点有诱导公式,差角正弦公式,特殊角的三角函数值,属于简单题目.13、【解题分析】

由等差数列的前项和公式,代入计算即可.【题目详解】已知为等差数列,且,,所以,解得或(舍)故答案为【题目点拨】本题考查了等差数列前项和公式的应用,属于基础题.14、【解题分析】

直接利用长度型几何概型求解即可.【题目详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【题目点拨】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.15、【解题分析】

令,计算出模的最大值即可,当与同向时的模最大.【题目详解】令,则,因为,所以当,,因此当与同向时的模最大,【题目点拨】本题主要考查了向量模的计算,以及二次函数在给定区间上的最值.整体换元的思想,属于较的难题,在解二次函数的问题时往往结合图像、开口、对称轴等进行分析.16、【解题分析】试题分析:=,又,,代入可得8,所以考点:向量的数量积运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)不存在;(2)a>﹣2;(3)见解析【解题分析】

(1)解方程即可判断;(2)由题转化为2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,分离参数a=2x﹣2求值域即可求解;(3)由题意判断方程cos(x+1)=cosx+cos1是否有解即可.【题目详解】(1)若函数有“和一点”,则不合题意故不存在(2)若函数f(x)=2x+a+2x有“和一点”.则方程f(x+1)=f(x)+f(1)有解,即2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,即a=2x﹣2有解,故a>﹣2;(3)证明:令f(x+1)=f(x)+f(1),即cos(x+1)=cosx+cos1,即cosxcos1﹣sinxsin1﹣cosx=cos1,即(cos1﹣1)cosx﹣sinxsin1=cos1,故存在θ,故cos(x+θ)=cos1,即cos(x+θ)=cos1,即cos(x+θ),∵cos21﹣(2﹣2cos1)=cos21+2cos1﹣2<cos22cos22<0,故01,故方程cos(x+1)=cosx+cos1有解,即f(x)=cosx函数有“和一点”.【题目点拨】本题考查了新定义及分类讨论的思想应用,同时考查了三角函数的化简与应用,转化为有解问题是关键,是中档题18、(1);(2).【解题分析】试题分析:(1)将点的坐标代入函数的方程得到.利用,可求得数列的通项公式为.(2)利用裂项求和法求得.为递增的数列,当时有最小值为,所以,解得.试题解析:(1)点在函数的图象上,.①当时,,②①-②得.当时,,符合上式..(2)由(1)得,.,数列单调递增,中的最小项为.要使不等式对任意正整数恒成立,只要,即.解得,即实数的取值范围为.点睛:本题主要考查函数与数列,考查已知数列前项和,求数列通项的方法,即用公式.要注意验证当时等号是否成立.考查了裂项求和法,当数列通项是分数的形式,并且分母是两个等差数列的乘积的时候,可考虑用裂项求和法求和.还考查了数列的单调性和恒成立问题的解法.19、(1);甲户在2019年能够脱贫;(2)【解题分析】

(1)由已知数据求得与的值,得到线性回归方程,取求得值,说明甲户在2019年能否脱贫;(2)列出从该村剩余5户贫困户中任取2户的所有可能情况,利用随机事件的概率计算公式求解.【题目详解】(1)根据表格中数据可得,,由,,可得.∴关于的线性回归方程,当时,(百元),∵3850>3747,∴甲户在2019年能够脱贫;(2)设没有脱贫的2户为,另3户为,所有可能的情况为:共有10种可能.其中至少有一户没有脱贫的可能情况有7种.∴至少有一户没有脱贫的概率为.【题目点拨】本题主要考查线性回归方程的求法,考查随机事件概率的求法,是中档题.20、(1);(2)正四棱柱的底面边长为时,正四棱柱的表面积最大值为48.【解题分析】试题分析:(1)根据比例关系式求出关于的解析式即可;(2)设该正四棱柱的表面积为,得到关系式,根据二次函数的性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论