![2024届山西省汾阳市汾阳中学高一数学第二学期期末综合测试模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M01/3F/32/wKhkGWWeeymAFgymAAGxDla33Vg660.jpg)
![2024届山西省汾阳市汾阳中学高一数学第二学期期末综合测试模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M01/3F/32/wKhkGWWeeymAFgymAAGxDla33Vg6602.jpg)
![2024届山西省汾阳市汾阳中学高一数学第二学期期末综合测试模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M01/3F/32/wKhkGWWeeymAFgymAAGxDla33Vg6603.jpg)
![2024届山西省汾阳市汾阳中学高一数学第二学期期末综合测试模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M01/3F/32/wKhkGWWeeymAFgymAAGxDla33Vg6604.jpg)
![2024届山西省汾阳市汾阳中学高一数学第二学期期末综合测试模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M01/3F/32/wKhkGWWeeymAFgymAAGxDla33Vg6605.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省汾阳市汾阳中学高一数学第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)
4
2
3
5
销售额(万元)
49
26
39
54
根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元2.已知函数,则不等式的解集是()A. B. C. D.3.已知四面体中,,分别是,的中点,若,,与所成角的度数为30°,则与所成角的度数为()A.90° B.45° C.60° D.30°4.等差数列{an}中,若S1=1A.2019 B.1 C.1009 D.10105.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是()A.2张恰有一张是移动卡 B.2张至多有一张是移动卡C.2张都不是移动卡 D.2张至少有一张是移动卡6.设是两条不同的直线,是两个不同的平面,则下列叙述正确的是()①若,则;②若,则;③若,则;④若,则.A.①② B.③④ C.①③ D.②④7.若直线:与直线:平行,则的值为()A.1 B.1或2 C.-2 D.1或-28.在中,,,,则=()A. B.C. D.9.设x、y满足约束条件,则z=2x﹣y的最大值为()A.0 B.0.5 C.1 D.210.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最小值为_______.12.计算:__________.13.若直线与直线互相平行,那么a的值等于_____.14.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.15.已知向量、满足,,且,则与的夹角为________.16.已知,,那么的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(1)若,求的值.(2)记,在中,满足,求函数的取值范围.18.如图所示,某住宅小区的平面图是圆心角为120°的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路,已知某人从沿走到用了10分钟,从沿走到用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径的长.19.如图,在中,,D是BC边上的一点,,,.(1)求的大小;(2)求边的长.20.在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.21.已知正方形的中心为,一条边所在直线的方程是.(1)求该正方形中与直线平行的另一边所在直线的方程;(2)求该正方形中与直线垂直的一边所在直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
试题分析:,∵数据的样本中心点在线性回归直线上,回归方程中的为1.4,∴42=1.4×2.5+a,∴=1.1,∴线性回归方程是y=1.4x+1.1,∴广告费用为6万元时销售额为1.4×6+1.1=3.5考点:线性回归方程2、A【解题分析】
分别考虑即时;即时,原不等式的解集,最后求出并集。【题目详解】当即时,,则等价于,即,解得:,当即时,,则等价于,即,所以,综述所述,原不等式的解集为故答案选A【题目点拨】本题考查分段函数的应用,一元二次不等式的解集,属于基础题。3、A【解题分析】
取的中点,利用三角形中位线定理,可以得到,与所成角为,运用三角形中位线定理和正弦定理,可以求出的大小,也就能求出与所成角的度数.【题目详解】取的中点连接,如下图所示:因为,分别是,的中点,所以有,因为与所成角的度数为30°,所以,与所成角的大小等于的度数.在中,,故本题选A.【题目点拨】本题考查了异面直线所成角的求法,考查了正弦定理,取中点利用三角形中位线定理是解题的关键.4、D【解题分析】
由等差数列{an}中,S1=1,S【题目详解】∵等差数列{an}中,S∴S即15=5+10d,解得d=1,∴S故选:D.【题目点拨】本题考查等差数列基本量的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.5、B【解题分析】
概率的事件可以认为是概率为的对立事件.【题目详解】事件“2张全是移动卡”的概率是,它的对立事件的概率是,事件为“2张不全是移动卡”,也即为“2张至多有一张是移动卡”.故选B.【题目点拨】本题考查对立事件,解题关键是掌握对立事件的概率性质:即对立事件的概率和为1.6、D【解题分析】可以线在平面内,③可以是两相交平面内与交线平行的直线,②对④对,故选D.7、A【解题分析】试题分析:因为直线:与直线:平行,所以或-2,又时两直线重合,所以.考点:两条直线平行的条件.点评:此题是易错题,容易选C,其原因是忽略了两条直线重合的验证.8、C【解题分析】
根据正弦定理,代入即可求解.【题目详解】因为中,,,由正弦定理可知代入可得故选:C【题目点拨】本题考查了正弦定理在解三角形中的应用,属于基础题.9、C【解题分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【题目详解】由约束条件作出可行域如图,联立,解得A(2,3),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过A时,直线在y轴上的截距最小,z有最大值为2×2﹣3=1.故选:C.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.10、D【解题分析】
求出正四棱锥的高后可求其体积.【题目详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【题目点拨】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
运用基本不等式求出结果.【题目详解】因为,所以,,所以,所以最小值为【题目点拨】本题考查了基本不等式的运用求最小值,需要满足一正二定三相等.12、【解题分析】
分子分母同除以,即可求出结果.【题目详解】因为.故答案为【题目点拨】本题主要考查“”型的极限计算,熟记常用做法即可,属于基础题型.13、;【解题分析】由题意得,验证满足条件,所以14、0.72【解题分析】
根据对立事件的概率公式即可求解.【题目详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【题目点拨】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.15、【解题分析】
直接应用数量积的运算,求出与的夹角.【题目详解】设向量、的夹角为;∵,∴,∵,∴.故答案为:.【题目点拨】本题考查向量的夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.16、【解题分析】
首先根据题中条件求出角,然后代入即可.【题目详解】由题知,,所以,故.故答案为:.【题目点拨】本题考查了特殊角的三角函数值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)求出数量积,由二倍角公式和两角和的正弦公式化简,求出,然后结合诱导公式和余弦的二倍角公式可求值;(2)应用两角和的正弦公式可求得,得有范围,由(1)的结论得,即其范围.【题目详解】(1)由题意,,.(2)由(1),由得,三角形中,∴,.则,,∴.【题目点拨】本题考查平面向量数量积的坐标表示,考查两角和正弦公式,二倍角公式,考查三角函数的性质.解题中利用三角公式化简变形是解题关键,本题属于中档题.18、【解题分析】
连接,由题意,得米,米,,在△中,由余弦定理可得答案.【题目详解】设该扇形的半径为米,连接,如图所示:由题意,得米,米,,在△中,由余弦定理得,即,解得米.答:该扇形的半径的长为米.【题目点拨】本题考查了利用余弦定理解三角形,将问题转化为在三角形中求解是解题关键,属于基础题.19、(1)(2)【解题分析】
(1)在中,由余弦定理运算即可;(2)在中,由正弦定理运算即可.【题目详解】解:(1)在中,,,,由余弦定理可得,又,即;(2)由(1)得,在中,,,由正弦定理可得:,即.【题目点拨】本题考查了正弦定理、余弦定理的应用,属基础题.20、(Ⅰ)(Ⅱ)【解题分析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:由,及,得.由,及余弦定理,得.(Ⅱ)解:由(Ⅰ),可得,代入,得.由(Ⅰ)知,A为钝角,所以.于是,,故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.21、(1);(2)或.【解题分析】
(1)由直线平行则斜率相等,设出所求直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全电动托盘搬运车项目可行性研究报告
- 2025至2030年计分牌项目投资价值分析报告
- 2025至2030年玻璃钢托架项目投资价值分析报告
- 2025至2030年巧克力硬质糖项目投资价值分析报告
- 2025年中国跳高海绵垫市场调查研究报告
- 2025年除草镰项目可行性研究报告
- 2025年矿物吸附剂项目可行性研究报告
- 2025年不锈钢流体用管项目可行性研究报告
- 2025至2030年链条铆头机项目投资价值分析报告
- 2025年中国三九蛋白肽市场调查研究报告
- 苏教版2023年小学四年级数学下册教学计划+教学进度表
- 小学作文指导《难忘的一件事》课件
- 断绝关系协议书范文参考(5篇)
- 量子力学课件1-2章-波函数-定态薛定谔方程
- 最新变态心理学课件
- 工程洽商记录表格
- 2021最新版三年级下册生命-生态-安全教案
- 【自考练习题】石家庄学院概率论与数理统计真题汇总(附答案解析)
- 农村集体“三资”管理流程图
- 高中英语 牛津译林版必修第三册 Unit 2词汇全解
- (新版教材)粤教粤科版三年级下册科学全册教学课件PPT
评论
0/150
提交评论