2024届湖北省鄂东南示范高中教改联盟高一数学第二学期期末教学质量检测试题含解析_第1页
2024届湖北省鄂东南示范高中教改联盟高一数学第二学期期末教学质量检测试题含解析_第2页
2024届湖北省鄂东南示范高中教改联盟高一数学第二学期期末教学质量检测试题含解析_第3页
2024届湖北省鄂东南示范高中教改联盟高一数学第二学期期末教学质量检测试题含解析_第4页
2024届湖北省鄂东南示范高中教改联盟高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省鄂东南示范高中教改联盟高一数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设为锐角,,若与共线,则角()A.15° B.30° C.45° D.60°2.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.3.直线的倾斜角是()A. B. C. D.4.在中,所对的边分别为,若,,,则()A. B. C.1 D.35.设为等比数列,给出四个数列:①,②,③,④.其中一定为等比数列的是()A.①③ B.②④ C.②③ D.①②6.已知,则的值构成的集合为()A. B. C. D.7.在中,若,,,则()A. B. C. D.8.已知函数,下列结论错误的是()A.既不是奇函数也不是偶函数 B.在上恰有一个零点C.是周期函数 D.在上是增函数9.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)

4

2

3

5

销售额(万元)

49

26

39

54

根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元10.已知向量是单位向量,=(3,4),且在方向上的投影为,則A.36 B.21 C.9 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.甲船在岛的正南处,,甲船以每小时的速度向正北方向航行,同时乙船自出发以每小时的速度向北偏东的方向驶去,甲、乙两船相距最近的距离是_____.12.正六棱柱各棱长均为,则一动点从出发沿表面移动到时的最短路程为__________.13.在等比数列中,,,则__________.14.设函数的最小值为,则的取值范围是___________.15.已知函数的图象如下,则的值为__________.16.已知函数在时取得最小值,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某地区2012年至2018年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2012201320142015201620172018年份代号1234567人均纯收入2.93.33.64.44.85.25.9(1)已知y与x线性相关,求y关于x的线性回归方程;(2)利用(1)中的线性回归方程,预测该地区2020年农村居民家庭人均纯收入.(附:线性回归方程中,,,其中为样本平均数)18.已知角终边上有一点,求下列各式的值.(1);(2)19.为了调查家庭的月收入与月储蓄的情况,某居民区的物业工作人员随机抽取该小区20个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得:,,,,.(1)求家庭的月储蓄对月收入的线性回归方程;(2)指出(1)中所求出方程的系数,并判断变量与之间是正相关还是负相关;(3)若该居民区某家庭月收入为9千元,预测该家庭的月储蓄.20.某校从高一年级学生中随机抽取60名学生,将期中考试的物理成绩(均为整数)分成六段:,,,…,后得到如图频率分布直方图.(1)根据频率分布直方图,估计众数和中位数;(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,求这两人的分数至少一人落在的概率.21.在中,角,,所对的边分别是,,,且.(1)求角;(2)若,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由题意,,又为锐角,∴.故选B.2、A【解题分析】

观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【题目详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【题目点拨】本题通过三视图考察空间识图的能力,属于基础题。3、D【解题分析】

先求出直线的斜率,再求直线的倾斜角.【题目详解】由题得直线的斜率.故选:D【题目点拨】本题主要考查直线的斜率和倾斜角的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.4、A【解题分析】

利用三角形内角和为,得到,利用正弦定理求得.【题目详解】因为,,所以,在中,,所以,故选A.【题目点拨】本题考查三角形内角和及正弦定理的应用,考查基本运算求解能力.5、D【解题分析】

设,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【题目详解】设,①,,所以数列是等比数列;②,,所以数列是等比数列;③,不是一个常数,所以数列不是等比数列;④,不是一个常数,所以数列不是等比数列.故选D【题目点拨】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.6、B【解题分析】

根据的奇偶分类讨论.【题目详解】为偶数时,,为奇数时,设,则.∴的值构成的集合是.故选:B.【题目点拨】本题考查诱导公式,掌握诱导公式是解题基础.注意诱导公式的十字口诀:奇变偶不变,符号看象限.7、D【解题分析】

由正弦定理构造方程即可求得结果.【题目详解】由正弦定理得:本题正确选项:【题目点拨】本题考查正弦定理解三角形的问题,属于基础题.8、B【解题分析】

将函数利用同角三角函数的基本关系,化成,再对选项进行一一验证,即可得答案.【题目详解】∵,对A,∵,∴既不是奇函数也不是偶函数,故A命题正确;对B,令,解关于的一元二次方程得:,∵,∴方程存在两个根,∴在上有两个零点,故B错误;对C,显然是函数的一个周期,故C正确;对D,令,则,∵在单调递减,且,又∵在单调递减,∴在上是增函数,故D正确;故选:B【题目点拨】本题考查复合函数的单调性、奇偶性、周期性、零点,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意复合函数周增异减原则.9、B【解题分析】

试题分析:,∵数据的样本中心点在线性回归直线上,回归方程中的为1.4,∴42=1.4×2.5+a,∴=1.1,∴线性回归方程是y=1.4x+1.1,∴广告费用为6万元时销售额为1.4×6+1.1=3.5考点:线性回归方程10、D【解题分析】

根据公式把模转化为数量积,展开后再根据和已知条件计算.【题目详解】因为在方向上的投影为,所以,.故选D.【题目点拨】本题主要考查向量模有关的计算,常用公式有,.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据条件画出示意图,在三角形中利用余弦定理求解相距的距离,利用二次函数对称轴及可求解出最值.【题目详解】假设经过小时两船相距最近,甲、乙分别行至,,如图所示,可知,,,.当小时时甲、乙两船相距最近,最近距离为.【题目点拨】本题考查解三角形的实际应用,难度较易.关键是通过题意将示意图画出来,然后将待求量用未知数表示,最后利用函数思想求最值.12、【解题分析】

根据可能走的路径,将所给的正六棱柱展开,利用平面几何知识求解比较.【题目详解】将所给的正六棱柱下图(2)表面按图(1)展开.,,,故从A沿正侧面和上表面到D1的路程最短为故答案为:.【题目点拨】本题主要考查了空间几何体展形图的应用,还考查了空间想象和运算求解的能力,属于中档题.13、8【解题分析】

可先计算出公比,从而利用求得结果.【题目详解】因为,所以,所以,则.【题目点拨】本题主要考查等比数列基本量的相关计算,难度很小.14、.【解题分析】

确定函数的单调性,由单调性确定最小值.【题目详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【题目点拨】本题考查分段函数的单调性.由单调性确定最小值,15、【解题分析】

由函数的图象的顶点坐标求出,由半个周期求出,最后将特殊点的坐标求代入解析式,即可求得的值.【题目详解】解:由图象可得,,得.,将点代入函数解析式,得,,,又因为,所以故答案为:【题目点拨】本题考查由的部分图象确定其解析式.(1)根据函数的最高点的坐标确定(2)根据函数零点的坐标确定函数的周期求(3)利用最值点的坐标同时求的取值,即可得到函数的解析式.16、【解题分析】试题分析:因为,所以,当且仅当即,由题意,解得考点:基本不等式三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)6.8千元.【解题分析】

(1)由表中数据计算、,求出回归系数,得出关于的线性回归方程;(2)利用线性回归方程计算2020年对应时的值,即可得出结论.【题目详解】(1)由表中数据,计算,,,,,,关于的线性回归方程为:;(2)利用线性回归方程,计算时,(千元),预测该地区2020年农村居民家庭人均纯收入为6.8千元.【题目点拨】本题考查线性回归方程的求法与应用问题,考查函数与方程思想、转化与化归思想,考查数据处理.18、(1);(2)【解题分析】

(1)根据三角函数的定义,可知;(2)原式上下同时除以,变为表示的式子,即可求得结果.【题目详解】(1)(2),原式上下同时除以.【题目点拨】本题考查了三角函数的定义,属于基础题型.19、(1);(2)正相关;(3)2.2千元.【解题分析】

(1)直接利用公式计算回归方程为:.(2)由(1),故正相关.(3)把代入得:.【题目详解】(1)∵,,样本中心点为:∴由公式得:把代入得:所求回归方程为:;(2)由(1)知,所求出方程的系数为:,,∵,∴与之间是正相关.(3)把代入得:(千元)即该居民区某家庭月收入为9千元时,预测该家庭的月储蓄为2.2千元.【题目点拨】本题考查了回归方程的计算和预测,意在考查学生的计算能力.20、(1)众数为75,中位数为73.33;(2).【解题分析】

(1)由频率分布直方图能求出a=0.1.由此能求出众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,基本事件总数,这两人的分数至少一人落在[50,60)包含的基本事件个数,由此能求出这两人的分数至少一人落在[50,60)的概率.【题目详解】(1)由频率分布直方图得:,

解得,

所以众数为:,的频率为,

的频率为,

中位数为:.(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,

的频率为0.1,的频率为0.15,

中抽到人,中抽取人,从这五人中任选两人参加补考,

基本事件总数,这两人的分数至少一人落在包含的基本事件个数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论