版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
利用三角形全等测距离1、要证明两个三角形全等应有哪些必要条件?(1)“SSS”:三边对应相等的两个三角形全等.(2)“ASA”:两角和它们的夹边对应相等的两个三角形全等.(3)“AAS”:两角和其中一角的对边对应相等的两个三角形全等.(4)“SAS”:两边和它们的夹角对应相等的两个三角形全等.
复习旧知识2.请你在下列各图中,以最快的速度画出一个三角形,使它与△ABC全等,比比看谁快!ABCDE动手画一画3.请你在下列各图中,以最快的速度画出一个三角形,使它与△ABC全等,比比看谁快!ACBD′DE动手画一画在一次战役中,我军阵地与敌军碉堡隔河相望.为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,如何估测这个距离呢?想一想一位战士想出来这样一个办法:他面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转过一个角度,保持刚才的姿态,这时视线落在了自己所在岸的某一点上.接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与碉堡间的距离.你能解释其中的道理吗?你能从战士所讲述的方法中,画出相应的图形吗?并与同学进行交流.议一议由战士所讲述的方法可知:战士的身高AD不变,战士与地面是垂直的(AD⊥BC);视角∠DAC=∠DAB.AB(敌)CD(我)战士所讲述的方法中,已知条件是什么?战士要测的是敌碉堡(B)与我军阵地(D)的距离,战士的结论是只要按要求测得DC的长度即可.(即BD=DC)ABDC12解:在△ADB与△ADC中,∠1=∠2,
AD=AD,∠ADB=∠ADC=90°.∴△ADB≌△ADC(ASA).∴DB=DC(全等三角形对应边相等).∵小红在上周末游览风景区时,看到了一个美丽的池塘
,她想知道最远两点A、B之间的距离,但是她没有船,不能直接去测.手里只有一根绳子和一把尺子,她怎样才能测出A、B之间的距离呢?把你的设计方案在图上画出来,并与你的同伴交流你的方案,看看谁的方案更便捷.AB●●A、B间有多远呢?想一想一个叔叔帮小红出了这样一个主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE的长度就是A,B间的距离.你能说明其中的道理吗?解:在△CED与△CBA中,
CE=CB,∠ECD=∠BCA,
CD=CA.
∴△CED≌△CBA(SAS).∴DE=AB(全等三角形对应边相等).∵例2:如图,太阳光线AC与A’C’是平行的,同一时刻两根高度相同的木杆在太阳光照射下的影子一样长吗?说说你的理由?解:∵AC∥A’C’,∴∠ACB=∠A’C’B’(两直线平行,同位角相等).在△ABC和△A’B’C’中,
∠ABC=∠A’B’C’=90°,∠ACB=∠A’C’B’,
AB=A’B’.∴△ABC≌△A’B’C’(AAS).∴BC=B’C’(全等三角形对应边相等).∵例3你还记得怎样用尺规作一个角等于已知角吗?你能说明其中的道理吗?BODACD’A’C’O’B’BODACD’A’C’O’B’解:连结BC、B’C’.在△DOC和△D’O’C’中,OC=O’C’,
OD=O’D’,CD=C’D’.∴△DOC≌△D’O’C’(SSS).∴∠DOC=∠D’O’C’(全等三角形对应角相等).∵某城市搞亮化工程,如图,在甲楼底部、乙楼顶部分别安装一盏射灯.已知A灯恰好照到B灯,B灯恰好照到甲楼的顶部,如果两盏灯的光线与水平线的夹角相等,那么能否说甲楼的高度是乙楼的2倍?说说你的看法.
甲
乙
A
B练一练如图要测量河两岸相对的两点A、B的距离,先在AB
的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长.判定△EDC≌△ABC的理由是()A、SSSB、ASAC、AASD、SASBA●●DCEFB做一做2.如图所示小明设计了一种测工件内径AB的卡钳(只要测出CD的,就知道AB),问:在卡钳的设计中,AO、BO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光明的守护者灯具
- 《快餐厅设计》课件
- 2024年一年级品生下册《种养一棵花》教案2 山东版
- 2024学年九年级英语上册 Unit 4 Stories and poems Lesson 24 Writing a Poem教学设计(新版)冀教版
- 2024-2025学年八年级物理下册 第九章 机械和功 四 功率教案 (新版)北师大版
- 2023六年级数学上册 一 小手艺展示-分数乘法信息窗3 求一个数的几分之几是多少说课稿 青岛版六三制
- 2023七年级道德与法治上册 第三单元 师长情谊 第六课 师生之间第2框 师生交往说课稿 新人教版
- 动词锤炼 课件
- 自己拟的入股合同(2篇)
- 获奖课件 英语
- 新课标人教统编版高中语文选择性必修中册第一单元全单元教案教学设计(含单元研习任务)
- 自学考试-计算机系统结构(全国)
- 极地特快中英文台词打印版
- GB/T 3620.1-2016钛及钛合金牌号和化学成分
- GB/T 307.3-2017滚动轴承通用技术规则
- GB/T 20416-2006自然保护区生态旅游规划技术规程
- GB/T 20160-2006旋转电机绝缘电阻测试
- GB/T 17514-2017水处理剂阴离子和非离子型聚丙烯酰胺
- 第十七动物的采食量
- 二副面试问题与答案
- 女生生理卫生课-完整课件
评论
0/150
提交评论